Cargando…
Forecasting the Tuberculosis Incidence Using a Novel Ensemble Empirical Mode Decomposition-Based Data-Driven Hybrid Model in Tibet, China
OBJECTIVE: The purpose of this study is to develop a novel data-driven hybrid model by fusing ensemble empirical mode decomposition (EEMD), seasonal autoregressive integrated moving average (SARIMA), with nonlinear autoregressive artificial neural network (NARNN), called EEMD-ARIMA-NARNN model, to a...
Autores principales: | Li, Jizhen, Li, Yuhong, Ye, Ming, Yao, Sanqiao, Yu, Chongchong, Wang, Lei, Wu, Weidong, Wang, Yongbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8164697/ https://www.ncbi.nlm.nih.gov/pubmed/34079304 http://dx.doi.org/10.2147/IDR.S299704 |
Ejemplares similares
-
Estimating the COVID-19 prevalence and mortality using a novel data-driven hybrid model based on ensemble empirical mode decomposition
por: Wang, Yongbin, et al.
Publicado: (2021) -
Time Series Analysis and Forecasting of the Hand-Foot-Mouth Disease Morbidity in China Using An Advanced Exponential Smoothing State Space TBATS Model
por: Yu, Chongchong, et al.
Publicado: (2021) -
A hybrid model for tuberculosis forecasting based on empirical mode decomposition in China
por: Zhao, Ruiqing, et al.
Publicado: (2023) -
A Hybrid Model for Coronavirus Disease 2019 Forecasting Based on Ensemble Empirical Mode Decomposition and Deep Learning
por: Liu, Shidi, et al.
Publicado: (2022) -
An Advanced Data-Driven Hybrid Model of SARIMA-NNNAR for Tuberculosis Incidence Time Series Forecasting in Qinghai Province, China
por: Wang, Yongbin, et al.
Publicado: (2020)