Cargando…
Comparison of cephalometric measurements between conventional and automatic cephalometric analysis using convolutional neural network
OBJECTIVE: The rapid development of artificial intelligence technologies for medical imaging has recently enabled automatic identification of anatomical landmarks on radiographs. The purpose of this study was to compare the results of an automatic cephalometric analysis using convolutional neural ne...
Autores principales: | Jeon, Sangmin, Lee, Kyungmin Clara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8165048/ https://www.ncbi.nlm.nih.gov/pubmed/34056670 http://dx.doi.org/10.1186/s40510-021-00358-4 |
Ejemplares similares
-
Comparison of cone-beam computed tomography cephalometric measurements using a midsagittal projection and conventional two-dimensional cephalometric measurements
por: Jung, Pil-Kyo, et al.
Publicado: (2015) -
Automatic Cephalometric Landmark Identification System Based on the Multi-Stage Convolutional Neural Networks with CBCT Combination Images
por: Kim, Min-Jung, et al.
Publicado: (2021) -
An Evaluation of Cellular Neural Networks for the Automatic Identification of Cephalometric Landmarks on Digital Images
por: Leonardi, Rosalia, et al.
Publicado: (2009) -
Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks
por: Lee, Jeong-Hoon, et al.
Publicado: (2020) -
Comparison between cephalometric measurements using digital manual and web-based artificial intelligence cephalometric tracing software
por: ÇOBAN, Gökhan, et al.
Publicado: (2022)