Cargando…
Development and Validation of a Machine-Learning Model for Prediction of Extubation Failure in Intensive Care Units
Background: Extubation failure (EF) can lead to an increased chance of ventilator-associated pneumonia, longer hospital stays, and a higher mortality rate. This study aimed to develop and validate an accurate machine-learning model to predict EF in intensive care units (ICUs). Methods: Patients who...
Autores principales: | Zhao, Qin-Yu, Wang, Huan, Luo, Jing-Chao, Luo, Ming-Hao, Liu, Le-Ping, Yu, Shen-Ji, Liu, Kai, Zhang, Yi-Jie, Sun, Peng, Tu, Guo-Wei, Luo, Zhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8165178/ https://www.ncbi.nlm.nih.gov/pubmed/34079812 http://dx.doi.org/10.3389/fmed.2021.676343 |
Ejemplares similares
-
Early prediction of noninvasive ventilation failure after extubation: development and validation of a machine-learning model
por: Wang, Huan, et al.
Publicado: (2022) -
A Machine-Learning Approach for Dynamic Prediction of Sepsis-Induced Coagulopathy in Critically Ill Patients With Sepsis
por: Zhao, Qin-Yu, et al.
Publicado: (2021) -
Underweight predicts extubation failure after planned extubation in intensive care units
por: Chuang, Chung-Yeh, et al.
Publicado: (2023) -
Prevention of unplanned endotracheal extubation in intensive care unit: An overview of systematic reviews
por: Wu, Jinhua, et al.
Publicado: (2022) -
Extubation failure in intensive care unit: Predictors and management
por: Kulkarni, Atul P., et al.
Publicado: (2008)