Cargando…
Ranking-Based Convolutional Neural Network Models for Peptide-MHC Class I Binding Prediction
T-cell receptors can recognize foreign peptides bound to major histocompatibility complex (MHC) class-I proteins, and thus trigger the adaptive immune response. Therefore, identifying peptides that can bind to MHC class-I molecules plays a vital role in the design of peptide vaccines. Many computati...
Autores principales: | Chen, Ziqi, Min, Martin Renqiang, Ning, Xia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8165219/ https://www.ncbi.nlm.nih.gov/pubmed/34079815 http://dx.doi.org/10.3389/fmolb.2021.634836 |
Ejemplares similares
-
Binding peptide generation for MHC Class I proteins with deep reinforcement learning
por: Chen, Ziqi, et al.
Publicado: (2023) -
Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction
por: Han, Youngmahn, et al.
Publicado: (2017) -
Impact of Structural Observables From Simulations to Predict the Effect of Single-Point Mutations in MHC Class II Peptide Binders
por: Ochoa, Rodrigo, et al.
Publicado: (2021) -
Using Global Analysis to Extend the Accuracy and Precision of Binding Measurements with T cell Receptors and Their Peptide/MHC Ligands
por: Blevins, Sydney J., et al.
Publicado: (2017) -
Automatic interictal epileptiform discharge (IED) detection based on convolutional neural network (CNN)
por: Zhang, Ling, et al.
Publicado: (2023)