Cargando…
Layer-Skipping Connections Improve the Effectiveness of Equilibrium Propagation on Layered Networks
Equilibrium propagation is a learning framework that marks a step forward in the search for a biologically-plausible implementation of deep learning, and could be implemented efficiently in neuromorphic hardware. Previous applications of this framework to layered networks encountered a vanishing gra...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8165608/ https://www.ncbi.nlm.nih.gov/pubmed/34079446 http://dx.doi.org/10.3389/fncom.2021.627357 |
Sumario: | Equilibrium propagation is a learning framework that marks a step forward in the search for a biologically-plausible implementation of deep learning, and could be implemented efficiently in neuromorphic hardware. Previous applications of this framework to layered networks encountered a vanishing gradient problem that has not yet been solved in a simple, biologically-plausible way. In this paper, we demonstrate that the vanishing gradient problem can be mitigated by replacing some of a layered network's connections with random layer-skipping connections in a manner inspired by small-world networks. This approach would be convenient to implement in neuromorphic hardware, and is biologically-plausible. |
---|