Cargando…
Layer-Skipping Connections Improve the Effectiveness of Equilibrium Propagation on Layered Networks
Equilibrium propagation is a learning framework that marks a step forward in the search for a biologically-plausible implementation of deep learning, and could be implemented efficiently in neuromorphic hardware. Previous applications of this framework to layered networks encountered a vanishing gra...
Autores principales: | Gammell, Jimmy, Buckley, Sonia, Nam, Sae Woo, McCaughan, Adam N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8165608/ https://www.ncbi.nlm.nih.gov/pubmed/34079446 http://dx.doi.org/10.3389/fncom.2021.627357 |
Ejemplares similares
-
Equilibrium Propagation for Memristor-Based Recurrent Neural Networks
por: Zoppo, Gianluca, et al.
Publicado: (2020) -
Global Epileptic Seizure Identification With Affinity Propagation Clustering Partition Mutual Information Using Cross-Layer Fully Connected Neural Network
por: Wang, Fengqin, et al.
Publicado: (2018) -
Skip-layer network with optimization method for domain adaptive detection
por: Xu, Qian, et al.
Publicado: (2022) -
Combining backpropagation with Equilibrium Propagation to improve an Actor-Critic reinforcement learning framework
por: Kubo, Yoshimasa, et al.
Publicado: (2022) -
Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer's Disease Classification
por: Böhle, Moritz, et al.
Publicado: (2019)