Cargando…

Identification of the prognostic value of ferroptosis-related gene signature in breast cancer patients

BACKGROUND: Breast cancer (BRCA) is a malignant tumor with high morbidity and mortality, which is a threat to women’s health worldwide. Ferroptosis is closely related to the occurrence and development of breast cancer. Here, we aimed to establish a ferroptosis-related prognostic gene signature for p...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ding, Wei, Guodong, Ma, Ju, Cheng, Shuai, Jia, Longyuan, Song, Xinyue, Zhang, Ming, Ju, Mingyi, Wang, Lin, Zhao, Lin, Xin, Shijie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8165796/
https://www.ncbi.nlm.nih.gov/pubmed/34059009
http://dx.doi.org/10.1186/s12885-021-08341-2
Descripción
Sumario:BACKGROUND: Breast cancer (BRCA) is a malignant tumor with high morbidity and mortality, which is a threat to women’s health worldwide. Ferroptosis is closely related to the occurrence and development of breast cancer. Here, we aimed to establish a ferroptosis-related prognostic gene signature for predicting patients’ survival. METHODS: Gene expression profile and corresponding clinical information of patients from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. The Least absolute shrinkage and selection operator (LASSO)-penalized Cox regression analysis model was utilized to construct a multigene signature. The Kaplan-Meier (K-M) and Receiver Operating Characteristic (ROC) curves were plotted to validate the predictive effect of the prognostic signature. Gene Ontology (GO) and Kyoto Encyclopedia of Genes, Genomes (KEGG) pathway and single-sample gene set enrichment analysis (ssGSEA) were performed for patients between the high-risk and low-risk groups divided by the median value of risk score. RESULTS: We constructed a prognostic signature consisted of nine ferroptosis-related genes (ALOX15, CISD1, CS, GCLC, GPX4, SLC7A11, EMC2, G6PD and ACSF2). The Kaplan-Meier curves validated the fine predictive accuracy of the prognostic signature (p < 0.001). The area under the curve (AUC) of the ROC curves manifested that the ferroptosis-related signature had moderate predictive power. GO and KEGG functional analysis revealed that immune-related responses were largely enriched, and immune cells, including activated dendritic cells (aDCs), dendritic cells (DCs), T-helper 1 (Th1), were higher in high-risk groups (p < 0.001). Oppositely, type I IFN response and type II IFN response were lower in high-risk groups (p < 0.001). CONCLUSION: Our study indicated that the ferroptosis-related prognostic signature gene could serve as a novel biomarker for predicting breast cancer patients’ prognosis. Furthermore, we found that immunotherapy might play a vital role in therapeutic schedule based on the level and difference of immune-related cells and pathways in different risk groups for breast cancer patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12885-021-08341-2.