Cargando…
Machine learning–accelerated computational fluid dynamics
Numerical simulation of fluids plays an essential role in modeling many physical phenomena, such as weather, climate, aerodynamics, and plasma physics. Fluids are well described by the Navier–Stokes equations, but solving these equations at scale remains daunting, limited by the computational cost o...
Autores principales: | Kochkov, Dmitrii, Smith, Jamie A., Alieva, Ayya, Wang, Qing, Brenner, Michael P., Hoyer, Stephan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166023/ https://www.ncbi.nlm.nih.gov/pubmed/34006645 http://dx.doi.org/10.1073/pnas.2101784118 |
Ejemplares similares
Ejemplares similares
-
Learning data-driven discretizations for partial differential equations
por: Bar-Sinai, Yohai, et al.
Publicado: (2019) -
Machine learning–accelerated design and synthesis of polyelemental heterostructures
por: Wahl, Carolin B., et al.
Publicado: (2021) -
Accelerating the discovery of novel magnetic materials using machine learning–guided adaptive feedback
por: Xia, Weiyi, et al.
Publicado: (2022) -
Ultrafast dynamic machine vision with spatiotemporal photonic computing
por: Zhou, Tiankuang, et al.
Publicado: (2023) -
Computational fluid dynamics
por: Magoules, Frederic
Publicado: (2011)