Cargando…
Joint cell segmentation and cell type annotation for spatial transcriptomics
RNA hybridization‐based spatial transcriptomics provides unparalleled detection sensitivity. However, inaccuracies in segmentation of image volumes into cells cause misassignment of mRNAs which is a major source of errors. Here, we develop JSTA, a computational framework for joint cell segmentation...
Autores principales: | Littman, Russell, Hemminger, Zachary, Foreman, Robert, Arneson, Douglas, Zhang, Guanglin, Gómez‐Pinilla, Fernando, Yang, Xia, Wollman, Roy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166214/ https://www.ncbi.nlm.nih.gov/pubmed/34057817 http://dx.doi.org/10.15252/msb.202010108 |
Ejemplares similares
-
Bering: joint cell segmentation and annotation for spatial transcriptomics with transferred graph embeddings
por: Jin, Kang, et al.
Publicado: (2023) -
Single cell molecular alterations reveal target cells and pathways of concussive brain injury
por: Arneson, Douglas, et al.
Publicado: (2018) -
scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling
por: Song, Dongyuan, et al.
Publicado: (2021) -
Systems spatiotemporal dynamics of traumatic brain injury at single-cell resolution reveals humanin as a therapeutic target
por: Arneson, Douglas, et al.
Publicado: (2022) -
Mammalian gene expression variability is explained by underlying cell state
por: Foreman, Robert, et al.
Publicado: (2020)