Cargando…
“Keep it simple, scholar”: an experimental analysis of few-parameter segmentation networks for retinal vessels in fundus imaging
PURPOSE: With the recent development of deep learning technologies, various neural networks have been proposed for fundus retinal vessel segmentation. Among them, the U-Net is regarded as one of the most successful architectures. In this work, we start with simplification of the U-Net, and explore t...
Autores principales: | Fu, Weilin, Breininger, Katharina, Schaffert, Roman, Pan, Zhaoya, Maier, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166700/ https://www.ncbi.nlm.nih.gov/pubmed/33929676 http://dx.doi.org/10.1007/s11548-021-02340-1 |
Ejemplares similares
-
Robust Vessel Segmentation in Fundus Images
por: Budai, A., et al.
Publicado: (2013) -
Retinal Vessel Segmentation Based on B-COSFIRE Filters in Fundus Images
por: Li, Wenjing, et al.
Publicado: (2022) -
Blood Vessel Segmentation of Fundus Retinal Images Based on Improved Frangi and Mathematical Morphology
por: Tian, Feng, et al.
Publicado: (2021) -
Interactive Blood Vessel Segmentation from Retinal Fundus Image Based on Canny Edge Detector
por: Ooi, Alexander Ze Hwan, et al.
Publicado: (2021) -
DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images
por: Raza, Mohsin, et al.
Publicado: (2021)