Cargando…
Using spatial-temporal ensembles of convolutional neural networks for lumen segmentation in ureteroscopy
PURPOSE: Ureteroscopy is an efficient endoscopic minimally invasive technique for the diagnosis and treatment of upper tract urothelial carcinoma. During ureteroscopy, the automatic segmentation of the hollow lumen is of primary importance, since it indicates the path that the endoscope should follo...
Autores principales: | Lazo, Jorge F., Marzullo, Aldo, Moccia, Sara, Catellani, Michele, Rosa, Benoit, de Mathelin, Michel, De Momi, Elena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166718/ https://www.ncbi.nlm.nih.gov/pubmed/33909264 http://dx.doi.org/10.1007/s11548-021-02376-3 |
Ejemplares similares
-
Robot-assisted ex vivo neobladder reconstruction: preliminary results of surgical skill evaluation
por: Chen, Ziyang, et al.
Publicado: (2022) -
Lesion segmentation in lung CT scans using unsupervised adversarial learning
por: Sherwani, Moiz Khan, et al.
Publicado: (2022) -
Ensembles of Convolutional Neural Networks and Transformers for Polyp Segmentation
por: Nanni, Loris, et al.
Publicado: (2023) -
An Open-Source COVID-19 CT Dataset with Automatic Lung Tissue Classification for Radiomics
por: Zaffino, Paolo, et al.
Publicado: (2021) -
Artificial intelligence for brain diseases: A systematic review
por: Segato, Alice, et al.
Publicado: (2020)