Cargando…

Ubiquitin-Specific-Processing Protease 7 Regulates Female Germline Stem Cell Self-Renewal Through DNA Methylation

Ubiquitin-specific-processing protease 7 (Usp7) is a key deubiquitinase controlling epigenetic modification and regulating the self-renewal, proliferation, and differentiation of stem cells. However, the functions and mechanisms of action of Usp7 on female germline stem cells (FGSCs) are unknown. He...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yongqiang, Li, Xiaoyong, Tian, Geng, Zhao, Xinyan, Wong, Jiemin, Shen, Yue, Wu, Ji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166723/
https://www.ncbi.nlm.nih.gov/pubmed/33151468
http://dx.doi.org/10.1007/s12015-020-10076-9
Descripción
Sumario:Ubiquitin-specific-processing protease 7 (Usp7) is a key deubiquitinase controlling epigenetic modification and regulating the self-renewal, proliferation, and differentiation of stem cells. However, the functions and mechanisms of action of Usp7 on female germline stem cells (FGSCs) are unknown. Here, we demonstrated that Usp7 regulated FGSC self-renewal via DNA methylation. The results of Cell Counting Kit-8 and 5-ethynyl-20-deoxyuridine assays showed that the viability and proliferation of FGSCs were negatively regulated by Usp7. Moreover, Usp7 downregulated the expression of self-renewal genes, such as Oct4, Etv5, Foxo1, and Akt, but upregulated the expression of differentiation-related genes including Stra8 and Sycp3. Mechanistically, RNA-seq results showed that Usp7 negatively regulated FGSC self-renewal but positively modulated differentiation in FGSCs. Meanwhile, both overexpression and knockdown of Usp7 resulted in significant changes in DNA methylation and histone modification in FGSCs. Additionally, RNA-seq and MeDIP-seq analyses showed that Usp7 regulates the self-renewal and differentiation of FGSCs mainly through DNA methylation rather than histone modification, which was also confirmed by a rescue assay. Our study not only offers a novel method to research FGSC self-renewal and differentiation in view of epigenetic modifications, but also provides a deep understanding of FGSC development. [Figure: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12015-020-10076-9.