Cargando…
RDD2020: An annotated image dataset for automatic road damage detection using deep learning
This data article provides details for the RDD2020 dataset comprising 26,336 road images from India, Japan, and the Czech Republic with more than 31,000 instances of road damage. The dataset captures four types of road damage: longitudinal cracks, transverse cracks, alligator cracks, and potholes; a...
Autores principales: | Arya, Deeksha, Maeda, Hiroya, Ghosh, Sanjay Kumar, Toshniwal, Durga, Sekimoto, Yoshihide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166755/ https://www.ncbi.nlm.nih.gov/pubmed/34095382 http://dx.doi.org/10.1016/j.dib.2021.107133 |
Ejemplares similares
-
The Belt and Road Initiative on Twitter: An annotated dataset
por: Man, Chun-Yin, et al.
Publicado: (2022) -
A road surface image dataset with detailed annotations for driving assistance applications
por: Zhao, Tong, et al.
Publicado: (2022) -
Development of a Large-Scale Roadside Facility Detection Model Based on the Mapillary Dataset
por: Yang, Zhehui, et al.
Publicado: (2022) -
Saudi Arabian road accident mortality and traffic safety interventions dataset (2010–2020)
por: Raza, Syed Arshad, et al.
Publicado: (2022) -
Expression and localization of Rdd proteins in Xenopus embryo
por: Lim, Jong-Chan, et al.
Publicado: (2014)