Cargando…
Easy domain adaptation method for filling the species gap in deep learning-based fruit detection
Fruit detection and counting are essential tasks for horticulture research. With computer vision technology development, fruit detection techniques based on deep learning have been widely used in modern orchards. However, most deep learning-based fruit detection models are generated based on fully s...
Autores principales: | Zhang, Wenli, Chen, Kaizhen, Wang, Jiaqi, Shi, Yun, Guo, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8167097/ https://www.ncbi.nlm.nih.gov/pubmed/34059636 http://dx.doi.org/10.1038/s41438-021-00553-8 |
Ejemplares similares
-
Deep-learning-based in-field citrus fruit detection and tracking
por: Zhang, Wenli, et al.
Publicado: (2022) -
EasyDAM_V2: Efficient Data Labeling Method for Multishape, Cross-Species Fruit Detection
por: Zhang, Wenli, et al.
Publicado: (2022) -
Lightweight Fruit-Detection Algorithm for Edge Computing Applications
por: Zhang, Wenli, et al.
Publicado: (2021) -
Asymmetric Adaptive Fusion in a Two-Stream Network for RGB-D Human Detection
por: Zhang, Wenli, et al.
Publicado: (2021) -
Easy Method of Starting Cohesive Gold Fillings
por: Sheehan, D. E.
Publicado: (1903)