Cargando…

MMP8 increases tongue carcinoma cell–cell adhesion and diminishes migration via cleavage of anti-adhesive FXYD5

Matrix metalloproteinases (MMPs) modify bioactive factors via selective processing or degradation resulting in tumour-promoting or tumour-suppressive effects, such as those by MMP8 in various cancers. We mapped the substrates of MMP8 to elucidate its previously shown tumour-protective role in oral t...

Descripción completa

Detalles Bibliográficos
Autores principales: Juurikka, K., Dufour, A., Pehkonen, K., Mainoli, B., Campioni Rodrigues, P., Solis, N., Klein, T., Nyberg, P., Overall, C. M., Salo, T., Åström, P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8167110/
https://www.ncbi.nlm.nih.gov/pubmed/34059618
http://dx.doi.org/10.1038/s41389-021-00334-x
Descripción
Sumario:Matrix metalloproteinases (MMPs) modify bioactive factors via selective processing or degradation resulting in tumour-promoting or tumour-suppressive effects, such as those by MMP8 in various cancers. We mapped the substrates of MMP8 to elucidate its previously shown tumour-protective role in oral tongue squamous cell carcinoma (OTSCC). MMP8 overexpressing (+) HSC-3 cells, previously demonstrated to have reduced migration and invasion, showed enhanced cell-cell adhesion. By analysing the secretomes of MMP8 + and control cells with terminal amine isotopic labelling of substrates (TAILS) coupled with liquid chromatography and tandem mass spectrometry (LC-MS/MS), we identified 36 potential substrates of MMP8, including FXYD domain-containing ion transport regulator 5 (FXYD5). An anti-adhesive glycoprotein FXYD5 has been previously shown to predict poor survival in OTSCC. Cleavage of FXYD5 by MMP8 was confirmed using recombinant proteins. Furthermore, we detected a loss of FXYD5 levels on cell membrane of MMP8 + cells, which was rescued by inhibition of the proteolytic activity of MMP8. Silencing (si) FXYD5 increased the cell-cell adhesion of control but not that of MMP8 + cells. siFXYD5 diminished the viability and motility of HSC-3 cells independent of MMP8 and similar effects were seen in another tongue cancer cell line, SCC-25. FXYD5 is a novel substrate of MMP8 and reducing FXYD5 levels either with siRNA or cleavage by MMP8 increases cell adhesion leading to reduced motility. FXYD5 being a known prognostic factor in OTSCC, our findings strengthen its potential as a therapeutic target.