Cargando…
Nervous system modulation through electrical stimulation in companion animals
Domestic animals with severe spontaneous spinal cord injury (SCI), including dogs and cats that are deep pain perception negative (DPP−), can benefit from specific evaluations involving neurorehabilitation integrative protocols. In human medicine, patients without deep pain sensation, classified as...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8167506/ https://www.ncbi.nlm.nih.gov/pubmed/34053462 http://dx.doi.org/10.1186/s13028-021-00585-z |
Sumario: | Domestic animals with severe spontaneous spinal cord injury (SCI), including dogs and cats that are deep pain perception negative (DPP−), can benefit from specific evaluations involving neurorehabilitation integrative protocols. In human medicine, patients without deep pain sensation, classified as grade A on the American Spinal Injury Association (ASIA) impairment scale, can recover after multidisciplinary approaches that include rehabilitation modalities, such as functional electrical stimulation (FES), transcutaneous electrical spinal cord stimulation (TESCS) and transcranial direct current stimulation (TDCS). This review intends to explore the history, biophysics, neurophysiology, neuroanatomy and the parameters of FES, TESCS, and TDCS, as safe and noninvasive rehabilitation modalities applied in the veterinary field. Additional studies need to be conducted in clinical settings to successfully implement these guidelines in dogs and cats. |
---|