Cargando…
Electroporation of Mouse Follicles, Oocytes and Embryos without Manipulating Zona Pellucida
Electroporation is an effective technique of transfection, but its efficiency depends on the optimization of various parameters. In this study, a simplified and efficient method of gene manipulation was standardized through electroporation to introduce a recombinant green fluorescent protein (GFP) c...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8167572/ https://www.ncbi.nlm.nih.gov/pubmed/33915920 http://dx.doi.org/10.3390/jdb9020013 |
Sumario: | Electroporation is an effective technique of transfection, but its efficiency depends on the optimization of various parameters. In this study, a simplified and efficient method of gene manipulation was standardized through electroporation to introduce a recombinant green fluorescent protein (GFP) construct as well as RNA-inhibitors in intact mouse follicles, oocytes and early embryos, where various electroporation parameters like voltage, pulse number and pulse duration were standardized. Electroporated preantral follicles were cultured further in vitro to obtain mature oocytes and their viability was confirmed through the localization of a known oocyte maturation marker, ovastacin, which appeared to be similar to the in vivo-derived mature oocytes and thus proved the viability of the in vitro matured oocytes after electroporation. Standardized electroporation parameters, i.e., three pulses of 30 V for 1 millisecond at an interval of 10 s, were applied to manipulate the expression of mmu-miR-26a in preantral follicles through the electroporation of miR inhibitors and mimics. The TUNEL apoptosis assay confirmed the normal development of the electroporated embryos when compared to the normal embryos. Conclusively, for the first time, this study demonstrated the delivery of exogenous oligonucleotides into intact mouse follicles, oocytes and embryos without hampering their zona pellucida (ZP) and further development. |
---|