Cargando…

Telemedicine for Follow-up Management of Patients After Liver Transplantation: Cohort Study

BACKGROUND: Technical capabilities for performing liver transplantation have developed rapidly; however, the lack of available livers has prompted the utilization of edge donor grafts, including those donated after circulatory death, older donors, and hepatic steatosis, thereby rendering it difficul...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Min, Wang, Bo, Xue, Zhao, Dong, Dinghui, Liu, Xuemin, Wu, Rongqian, Yu, Liang, Xiang, Junxi, Zhang, Xiaogang, Zhang, Xufeng, Lv, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8167618/
https://www.ncbi.nlm.nih.gov/pubmed/33999008
http://dx.doi.org/10.2196/27175
Descripción
Sumario:BACKGROUND: Technical capabilities for performing liver transplantation have developed rapidly; however, the lack of available livers has prompted the utilization of edge donor grafts, including those donated after circulatory death, older donors, and hepatic steatosis, thereby rendering it difficult to define optimal clinical outcomes. OBJECTIVE: We aimed to investigate the efficacy of telemedicine for follow-up management after liver transplantation. METHODS: To determine the efficacy of telemedicine for follow-up after liver transplantation, we performed a clinical observation cohort study to evaluate the rate of recovery, readmission rate within 30 days after discharge, mortality, and morbidity. Patients (n=110) who underwent liver transplantation (with livers from organ donation after citizen's death) were randomly assigned to receive either telemedicine-based follow-up management for 2 weeks in addition to the usual care or usual care follow-up only. Patients in the telemedicine group were given a robot free-of-charge for 2 weeks of follow-up. Using the robot, patients interacted daily, for approximately 20 minutes, with transplant specialists who assessed respiratory rate, electrocardiogram, blood pressure, oxygen saturation, and blood glucose level; asked patients about immunosuppressant medication use, diet, sleep, gastrointestinal function, exercise, and T-tube drainage; and recommended rehabilitation exercises. RESULTS: No differences were detected between patients in the telemedicine group (n=52) and those in the usual care group (n=50) regarding age (P=.17), the model for end-stage liver disease score (MELD, P=.14), operation time (P=.51), blood loss (P=.07), and transfusion volume (P=.13). The length and expenses of the initial hospitalization (P=.03 and P=.049) were lower in the telemedicine group than they were in the usual care follow-up group. The number of patients with MELD score ≥30 before liver transplantation was greater in the usual care follow-up group than that in the telemedicine group. Furthermore, the readmission rate within 30 days after discharge was markedly lower in the telemedicine group than in the usual care follow-up group (P=.02). The postoperative survival rates at 12 months in the telemedicine group and the usual care follow-up group were 94.2% and 90.0% (P=.65), respectively. Warning signs of complications were detected early and treated in time in the telemedicine group. Furthermore, no significant difference was detected in the long-term visit cumulative survival rate between the two groups (P=.50). CONCLUSIONS: Rapid recovery and markedly lower readmission rates within 30 days after discharge were evident for telemedicine follow-up management of patients post–liver transplantation, which might be due to high-efficiency in perioperative and follow-up management. Moreover, telemedicine follow-up management promotes the self-management and medication adherence, which improves patients’ health-related quality of life and facilitates achieving optimal clinical outcomes in post–liver transplantation.