Cargando…
HGG-25. PRMT5 PROMOTES TUMOR GROWTH BY MAINTAINING STEMNESS OF PEDIATRIC HIGH-GRADE GLIOMA CELLS
BACKGROUND: Pediatric high-grade gliomas (pHGG) are aggressive tumors that together constitute the most common cause of childhood cancer mortality. Tumor stem cells that drive proliferation of pHGG resist chemotherapy and radiation, complicating treatment. The arginine methyltransferase PRMT5 mainta...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168078/ http://dx.doi.org/10.1093/neuonc/noab090.089 |
Sumario: | BACKGROUND: Pediatric high-grade gliomas (pHGG) are aggressive tumors that together constitute the most common cause of childhood cancer mortality. Tumor stem cells that drive proliferation of pHGG resist chemotherapy and radiation, complicating treatment. The arginine methyltransferase PRMT5 maintains self-renewal in neural stem cells through epigenetic modifications. We hypothesized that PRMT5, which we identified as a potential driver of diffuse midline glioma (DMG) through an shRNA screen, plays a similar role in pHGG. METHODS: Using lentiviral delivery of shRNA, we knocked down (KD) PRMT5 in cortical pHGG and DMG cell lines and performed phenotypic, mechanistic and self-renewal assays. We irradiated PRMT5 KD and control cells to study sensitization. We orthotopically injected mice with PRMT5 KD pHGG cells, and with DMG cells in which PRMT5 was knocked out (KO) using CRISPR-Cas. RESULTS: In cellular models of cortical pHGG and DMG, PRMT5 KD significantly reduced proliferation, inhibited cell cycle progression, increased apoptosis resistance, and decreased self-renewing cell frequency. A relative shift of PRMT5 from the cytoplasm to the nucleus accompanied differentiation induced by PRMT5 KD. Epigenetic changes accompanying PRMT5 KD included increased H3K27me3, a global transcription inhibitor, and decreased H3K27M expression in DMG. PRMT5 KD sensitized pHGG cells to radiation, increasing cell death 17–30%. PRMT5 KD/KO significantly increased survival in mice and decreased tumor aggressiveness and proliferation, but mice still died of tumor-related effects. CONCLUSIONS: PRMT5 maintains self-renewal and drives proliferation in preclinical pHGG models. In cellular and in vivo models, PRMT5 KD/KO produces epigenetic changes, including increased H3K27me3 levels and diminished H3K27M, that may reduce proliferation and self-renewal. Future work includes elucidation of the mechanisms by which PRMT5 produces the observed changes. Because PRMT5 KD/KO does not eliminate tumor growth, we plan to further study combining PRMT5 KD/KO and clinical-grade small molecule PRMT5 inhibitors with radiation and chemotherapeutic agents. |
---|