Cargando…

HGG-05. NEURONAL ACTIVITY PROMOTES PEDIATRIC HIGH-GRADE GLIOMA GROWTH THROUGH A NLGN3-CSPG4 SIGNALING AXIS

High-grade gliomas, including diffuse intrinsic pontine glioma (DIPG), are a lethal group of cancers whose progression is strongly regulated by neuronal activity {Venkatesh 2015}{Venkatesh 2017}{Venkatesh 2019}. One way in which glioma cells sense neuronal activity is via interaction with the ectodo...

Descripción completa

Detalles Bibliográficos
Autores principales: Gillespie, Shawn, Kim, Yoon, Geraghty, Anna, Woo, Pamelyn, Monje, Michelle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168227/
http://dx.doi.org/10.1093/neuonc/noab090.071
_version_ 1783701848118525952
author Gillespie, Shawn
Kim, Yoon
Geraghty, Anna
Woo, Pamelyn
Monje, Michelle
author_facet Gillespie, Shawn
Kim, Yoon
Geraghty, Anna
Woo, Pamelyn
Monje, Michelle
author_sort Gillespie, Shawn
collection PubMed
description High-grade gliomas, including diffuse intrinsic pontine glioma (DIPG), are a lethal group of cancers whose progression is strongly regulated by neuronal activity {Venkatesh 2015}{Venkatesh 2017}{Venkatesh 2019}. One way in which glioma cells sense neuronal activity is via interaction with the ectodomain of post-synaptic adhesion protein neuroligin-3 (NLGN3), which is cleaved and released into the tumor microenvironment (TME) by the sheddase ADAM10. This interaction drives glioma growth, but the relevant binding partner of shed NLGN3 (sNLGN3) on glioma cells is currently unknown. Here, we report that sNLGN3 binds to chondroitin sulfate proteoglycan 4 (CSPG4), in turn inducing regulated intramembrane proteolysis (RIP) of CSPG4, and initiating a signaling cascade within DIPG cells to promote tumor growth. CSPG4 RIP involves activity-regulated ectodomain shedding by ADAM10 and subsequent gamma secretase-mediated release of the intracellular domain in healthy oligodendroglial precursor cells (OPCs), putative cells of origin for several forms of high-grade glioma {Sakry 2014}{Nayak 2018}. Incubation of high-grade glioma cells or healthy OPCs with recombinant NLGN3 is sufficient to augment ADAM10-mediated ectodomain release of CSPG4 and subsequent gamma secretase-mediated cleavage of the CSPG4 intracellular domain (ICD). Pre-treatment of glioma cells or OPCs with an ADAM10 inhibitor entirely blocks NLGN3-induced CSPG4 shedding. Acute depletion of CSPG4 via CRISPR gene editing renders glioma cells insensitive to the growth-promoting effects of NLGN3 application in vitro. We are now performing experiments to better discern how the CSPG4 ICD regulates signaling consequences downstream of sNLGN3 binding. In addition, we are using surface plasmon resonance to investigate whether the shed ectodomains of NLGN3 and CSPG4 remain in complex or only transiently interact. Altogether, our data form a critical missing link in understanding how glioma cells sense, translate and respond to neuronal activity in the TME and identify a new therapeutic target to disrupt neuron-glioma interactions.
format Online
Article
Text
id pubmed-8168227
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-81682272021-06-02 HGG-05. NEURONAL ACTIVITY PROMOTES PEDIATRIC HIGH-GRADE GLIOMA GROWTH THROUGH A NLGN3-CSPG4 SIGNALING AXIS Gillespie, Shawn Kim, Yoon Geraghty, Anna Woo, Pamelyn Monje, Michelle Neuro Oncol High Grade Gliomas High-grade gliomas, including diffuse intrinsic pontine glioma (DIPG), are a lethal group of cancers whose progression is strongly regulated by neuronal activity {Venkatesh 2015}{Venkatesh 2017}{Venkatesh 2019}. One way in which glioma cells sense neuronal activity is via interaction with the ectodomain of post-synaptic adhesion protein neuroligin-3 (NLGN3), which is cleaved and released into the tumor microenvironment (TME) by the sheddase ADAM10. This interaction drives glioma growth, but the relevant binding partner of shed NLGN3 (sNLGN3) on glioma cells is currently unknown. Here, we report that sNLGN3 binds to chondroitin sulfate proteoglycan 4 (CSPG4), in turn inducing regulated intramembrane proteolysis (RIP) of CSPG4, and initiating a signaling cascade within DIPG cells to promote tumor growth. CSPG4 RIP involves activity-regulated ectodomain shedding by ADAM10 and subsequent gamma secretase-mediated release of the intracellular domain in healthy oligodendroglial precursor cells (OPCs), putative cells of origin for several forms of high-grade glioma {Sakry 2014}{Nayak 2018}. Incubation of high-grade glioma cells or healthy OPCs with recombinant NLGN3 is sufficient to augment ADAM10-mediated ectodomain release of CSPG4 and subsequent gamma secretase-mediated cleavage of the CSPG4 intracellular domain (ICD). Pre-treatment of glioma cells or OPCs with an ADAM10 inhibitor entirely blocks NLGN3-induced CSPG4 shedding. Acute depletion of CSPG4 via CRISPR gene editing renders glioma cells insensitive to the growth-promoting effects of NLGN3 application in vitro. We are now performing experiments to better discern how the CSPG4 ICD regulates signaling consequences downstream of sNLGN3 binding. In addition, we are using surface plasmon resonance to investigate whether the shed ectodomains of NLGN3 and CSPG4 remain in complex or only transiently interact. Altogether, our data form a critical missing link in understanding how glioma cells sense, translate and respond to neuronal activity in the TME and identify a new therapeutic target to disrupt neuron-glioma interactions. Oxford University Press 2021-06-01 /pmc/articles/PMC8168227/ http://dx.doi.org/10.1093/neuonc/noab090.071 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle High Grade Gliomas
Gillespie, Shawn
Kim, Yoon
Geraghty, Anna
Woo, Pamelyn
Monje, Michelle
HGG-05. NEURONAL ACTIVITY PROMOTES PEDIATRIC HIGH-GRADE GLIOMA GROWTH THROUGH A NLGN3-CSPG4 SIGNALING AXIS
title HGG-05. NEURONAL ACTIVITY PROMOTES PEDIATRIC HIGH-GRADE GLIOMA GROWTH THROUGH A NLGN3-CSPG4 SIGNALING AXIS
title_full HGG-05. NEURONAL ACTIVITY PROMOTES PEDIATRIC HIGH-GRADE GLIOMA GROWTH THROUGH A NLGN3-CSPG4 SIGNALING AXIS
title_fullStr HGG-05. NEURONAL ACTIVITY PROMOTES PEDIATRIC HIGH-GRADE GLIOMA GROWTH THROUGH A NLGN3-CSPG4 SIGNALING AXIS
title_full_unstemmed HGG-05. NEURONAL ACTIVITY PROMOTES PEDIATRIC HIGH-GRADE GLIOMA GROWTH THROUGH A NLGN3-CSPG4 SIGNALING AXIS
title_short HGG-05. NEURONAL ACTIVITY PROMOTES PEDIATRIC HIGH-GRADE GLIOMA GROWTH THROUGH A NLGN3-CSPG4 SIGNALING AXIS
title_sort hgg-05. neuronal activity promotes pediatric high-grade glioma growth through a nlgn3-cspg4 signaling axis
topic High Grade Gliomas
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168227/
http://dx.doi.org/10.1093/neuonc/noab090.071
work_keys_str_mv AT gillespieshawn hgg05neuronalactivitypromotespediatrichighgradegliomagrowththroughanlgn3cspg4signalingaxis
AT kimyoon hgg05neuronalactivitypromotespediatrichighgradegliomagrowththroughanlgn3cspg4signalingaxis
AT geraghtyanna hgg05neuronalactivitypromotespediatrichighgradegliomagrowththroughanlgn3cspg4signalingaxis
AT woopamelyn hgg05neuronalactivitypromotespediatrichighgradegliomagrowththroughanlgn3cspg4signalingaxis
AT monjemichelle hgg05neuronalactivitypromotespediatrichighgradegliomagrowththroughanlgn3cspg4signalingaxis