Cargando…

IPDfromKM: reconstruct individual patient data from published Kaplan-Meier survival curves

BACKGROUND: When applying secondary analysis on published survival data, it is critical to obtain each patient’s raw data, because the individual patient data (IPD) approach has been considered as the gold standard of data analysis. However, researchers often lack access to IPD. We aim to propose a...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Na, Zhou, Yanhong, Lee, J. Jack
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168323/
https://www.ncbi.nlm.nih.gov/pubmed/34074267
http://dx.doi.org/10.1186/s12874-021-01308-8
Descripción
Sumario:BACKGROUND: When applying secondary analysis on published survival data, it is critical to obtain each patient’s raw data, because the individual patient data (IPD) approach has been considered as the gold standard of data analysis. However, researchers often lack access to IPD. We aim to propose a straightforward and robust approach to obtain IPD from published survival curves with a user-friendly software platform. RESULTS: Improving upon existing methods, we propose an easy-to-use, two-stage approach to reconstruct IPD from published Kaplan-Meier (K-M) curves. Stage 1 extracts raw data coordinates and Stage 2 reconstructs IPD using the proposed method. To facilitate the use of the proposed method, we developed the R package IPDfromKM and an accompanying web-based Shiny application. Both the R package and Shiny application have an “all-in-one” feature such that users can use them to extract raw data coordinates from published K-M curves, reconstruct IPD from the extracted data coordinates, visualize the reconstructed IPD, assess the accuracy of the reconstruction, and perform secondary analysis on the basis of the reconstructed IPD. We illustrate the use of the R package and the Shiny application with K-M curves from published studies. Extensive simulations and real-world data applications demonstrate that the proposed method has high accuracy and great reliability in estimating the number of events, number of patients at risk, survival probabilities, median survival times, and hazard ratios. CONCLUSIONS: IPDfromKM has great flexibility and accuracy to reconstruct IPD from published K-M curves with different shapes. We believe that the R package and the Shiny application will greatly facilitate the potential use of quality IPD and advance the use of secondary data to facilitate informed decision making in medical research.