Cargando…
Pay attention to doctor–patient dialogues: Multi-modal knowledge graph attention image-text embedding for COVID-19 diagnosis
The sudden increase in coronavirus disease 2019 (COVID-19) cases puts high pressure on healthcare services worldwide. At this stage, fast, accurate, and early clinical assessment of the disease severity is vital. In general, there are two issues to overcome: (1) Current deep learning-based works suf...
Autores principales: | Zheng, Wenbo, Yan, Lan, Gou, Chao, Zhang, Zhi-Cheng, Jason Zhang, Jun, Hu, Ming, Wang, Fei-Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168340/ https://www.ncbi.nlm.nih.gov/pubmed/34093095 http://dx.doi.org/10.1016/j.inffus.2021.05.015 |
Ejemplares similares
-
Paying attention to attention in depression
por: Keller, Arielle S., et al.
Publicado: (2019) -
Improving Knowledge Graph Embedding Using Locally and Globally Attentive Relation Paths
por: Jia, Ningning, et al.
Publicado: (2020) -
Attention Pays
por: James, Neen
Publicado: (2018) -
Lightweight dense video captioning with cross-modal attention and knowledge-enhanced unbiased scene graph
por: Han, Shixing, et al.
Publicado: (2023) -
Correction: Paying attention to attention in depression
por: Keller, Arielle S., et al.
Publicado: (2020)