Cargando…

A statistical model of COVID-19 testing in populations: effects of sampling bias and testing errors

We develop a statistical model for the testing of disease prevalence in a population. The model assumes a binary test result, positive or negative, but allows for biases in sample selection and both type I (false positive) and type II (false negative) testing errors. Our model also incorporates mult...

Descripción completa

Detalles Bibliográficos
Autores principales: Böttcher, Lucas, D’Orsogna, Maria R., Chou, Tom
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168390/
https://www.ncbi.nlm.nih.gov/pubmed/34075386
http://dx.doi.org/10.1101/2021.05.22.21257643

Ejemplares similares