Cargando…
A statistical model of COVID-19 testing in populations: effects of sampling bias and testing errors
We develop a statistical model for the testing of disease prevalence in a population. The model assumes a binary test result, positive or negative, but allows for biases in sample selection and both type I (false positive) and type II (false negative) testing errors. Our model also incorporates mult...
Autores principales: | Böttcher, Lucas, D’Orsogna, Maria R., Chou, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168390/ https://www.ncbi.nlm.nih.gov/pubmed/34075386 http://dx.doi.org/10.1101/2021.05.22.21257643 |
Ejemplares similares
-
A statistical model of COVID-19 testing in populations: effects of sampling bias and testing errors
por: Böttcher, Lucas, et al.
Publicado: (2022) -
Using excess deaths and testing statistics to determine COVID-19 mortalities
por: Böttcher, Lucas, et al.
Publicado: (2021) -
Using excess deaths and testing statistics to improve estimates of COVID-19 mortalities
por: Böttcher, Lucas, et al.
Publicado: (2021) -
Using excess deaths and testing statistics to improve estimates of COVID-19 mortalities
por: Böttcher, Lucas, et al.
Publicado: (2021) -
Modeling and forecasting age-specific drug overdose mortality in the United States
por: Böttcher, Lucas, et al.
Publicado: (2023)