Cargando…
iPSC Modeling of RBM20-Deficient DCM Identifies Upregulation of RBM20 as a Therapeutic Strategy
Recent advances in induced pluripotent stem cell (iPSC) technology and directed differentiation of iPSCs into cardiomyocytes (iPSC-CMs) make it possible to model genetic heart disease in vitro. We apply CRISPR/Cas9 genome editing technology to introduce three RBM20 mutations in iPSCs and differentia...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168789/ https://www.ncbi.nlm.nih.gov/pubmed/32905764 http://dx.doi.org/10.1016/j.celrep.2020.108117 |
_version_ | 1783701932855001088 |
---|---|
author | Briganti, Francesca Sun, Han Wei, Wu Wu, Jingyan Zhu, Chenchen Liss, Martin Karakikes, Ioannis Rego, Shannon Cipriano, Andrea Snyder, Michael Meder, Benjamin Xu, Zhenyu Millat, Gilles Gotthardt, Michael Mercola, Mark Steinmetz, Lars M. |
author_facet | Briganti, Francesca Sun, Han Wei, Wu Wu, Jingyan Zhu, Chenchen Liss, Martin Karakikes, Ioannis Rego, Shannon Cipriano, Andrea Snyder, Michael Meder, Benjamin Xu, Zhenyu Millat, Gilles Gotthardt, Michael Mercola, Mark Steinmetz, Lars M. |
author_sort | Briganti, Francesca |
collection | PubMed |
description | Recent advances in induced pluripotent stem cell (iPSC) technology and directed differentiation of iPSCs into cardiomyocytes (iPSC-CMs) make it possible to model genetic heart disease in vitro. We apply CRISPR/Cas9 genome editing technology to introduce three RBM20 mutations in iPSCs and differentiate them into iPSC-CMs to establish an in vitro model of RBM20 mutant dilated cardiomyopathy (DCM). In iPSC-CMs harboring a known causal RBM20 variant, the splicing of RBM20 target genes, calcium handling, and contractility are impaired consistent with the disease manifestation in patients. A variant (Pro633Leu) identified by exome sequencing of patient genomes displays the same disease phenotypes, thus establishing this variant as disease causing. We find that all-trans retinoic acid upregulates RBM20 expression and reverts the splicing, calcium handling, and contractility defects in iPSC-CMs with different causal RBM20 mutations. These results suggest that pharmacological upregulation of RBM20 expression is a promising therapeutic strategy for DCM patients with a heterozygous mutation in RBM20. |
format | Online Article Text |
id | pubmed-8168789 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-81687892021-06-01 iPSC Modeling of RBM20-Deficient DCM Identifies Upregulation of RBM20 as a Therapeutic Strategy Briganti, Francesca Sun, Han Wei, Wu Wu, Jingyan Zhu, Chenchen Liss, Martin Karakikes, Ioannis Rego, Shannon Cipriano, Andrea Snyder, Michael Meder, Benjamin Xu, Zhenyu Millat, Gilles Gotthardt, Michael Mercola, Mark Steinmetz, Lars M. Cell Rep Article Recent advances in induced pluripotent stem cell (iPSC) technology and directed differentiation of iPSCs into cardiomyocytes (iPSC-CMs) make it possible to model genetic heart disease in vitro. We apply CRISPR/Cas9 genome editing technology to introduce three RBM20 mutations in iPSCs and differentiate them into iPSC-CMs to establish an in vitro model of RBM20 mutant dilated cardiomyopathy (DCM). In iPSC-CMs harboring a known causal RBM20 variant, the splicing of RBM20 target genes, calcium handling, and contractility are impaired consistent with the disease manifestation in patients. A variant (Pro633Leu) identified by exome sequencing of patient genomes displays the same disease phenotypes, thus establishing this variant as disease causing. We find that all-trans retinoic acid upregulates RBM20 expression and reverts the splicing, calcium handling, and contractility defects in iPSC-CMs with different causal RBM20 mutations. These results suggest that pharmacological upregulation of RBM20 expression is a promising therapeutic strategy for DCM patients with a heterozygous mutation in RBM20. 2020-09-08 /pmc/articles/PMC8168789/ /pubmed/32905764 http://dx.doi.org/10.1016/j.celrep.2020.108117 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Briganti, Francesca Sun, Han Wei, Wu Wu, Jingyan Zhu, Chenchen Liss, Martin Karakikes, Ioannis Rego, Shannon Cipriano, Andrea Snyder, Michael Meder, Benjamin Xu, Zhenyu Millat, Gilles Gotthardt, Michael Mercola, Mark Steinmetz, Lars M. iPSC Modeling of RBM20-Deficient DCM Identifies Upregulation of RBM20 as a Therapeutic Strategy |
title | iPSC Modeling of RBM20-Deficient DCM Identifies Upregulation of RBM20 as a Therapeutic Strategy |
title_full | iPSC Modeling of RBM20-Deficient DCM Identifies Upregulation of RBM20 as a Therapeutic Strategy |
title_fullStr | iPSC Modeling of RBM20-Deficient DCM Identifies Upregulation of RBM20 as a Therapeutic Strategy |
title_full_unstemmed | iPSC Modeling of RBM20-Deficient DCM Identifies Upregulation of RBM20 as a Therapeutic Strategy |
title_short | iPSC Modeling of RBM20-Deficient DCM Identifies Upregulation of RBM20 as a Therapeutic Strategy |
title_sort | ipsc modeling of rbm20-deficient dcm identifies upregulation of rbm20 as a therapeutic strategy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168789/ https://www.ncbi.nlm.nih.gov/pubmed/32905764 http://dx.doi.org/10.1016/j.celrep.2020.108117 |
work_keys_str_mv | AT brigantifrancesca ipscmodelingofrbm20deficientdcmidentifiesupregulationofrbm20asatherapeuticstrategy AT sunhan ipscmodelingofrbm20deficientdcmidentifiesupregulationofrbm20asatherapeuticstrategy AT weiwu ipscmodelingofrbm20deficientdcmidentifiesupregulationofrbm20asatherapeuticstrategy AT wujingyan ipscmodelingofrbm20deficientdcmidentifiesupregulationofrbm20asatherapeuticstrategy AT zhuchenchen ipscmodelingofrbm20deficientdcmidentifiesupregulationofrbm20asatherapeuticstrategy AT lissmartin ipscmodelingofrbm20deficientdcmidentifiesupregulationofrbm20asatherapeuticstrategy AT karakikesioannis ipscmodelingofrbm20deficientdcmidentifiesupregulationofrbm20asatherapeuticstrategy AT regoshannon ipscmodelingofrbm20deficientdcmidentifiesupregulationofrbm20asatherapeuticstrategy AT ciprianoandrea ipscmodelingofrbm20deficientdcmidentifiesupregulationofrbm20asatherapeuticstrategy AT snydermichael ipscmodelingofrbm20deficientdcmidentifiesupregulationofrbm20asatherapeuticstrategy AT mederbenjamin ipscmodelingofrbm20deficientdcmidentifiesupregulationofrbm20asatherapeuticstrategy AT xuzhenyu ipscmodelingofrbm20deficientdcmidentifiesupregulationofrbm20asatherapeuticstrategy AT millatgilles ipscmodelingofrbm20deficientdcmidentifiesupregulationofrbm20asatherapeuticstrategy AT gotthardtmichael ipscmodelingofrbm20deficientdcmidentifiesupregulationofrbm20asatherapeuticstrategy AT mercolamark ipscmodelingofrbm20deficientdcmidentifiesupregulationofrbm20asatherapeuticstrategy AT steinmetzlarsm ipscmodelingofrbm20deficientdcmidentifiesupregulationofrbm20asatherapeuticstrategy |