Cargando…
Machine learning reduced workload with minimal risk of missing studies: development and evaluation of a randomized controlled trial classifier for Cochrane Reviews
OBJECTIVES: This study developed, calibrated, and evaluated a machine learning classifier designed to reduce study identification workload in Cochrane for producing systematic reviews. METHODS: A machine learning classifier for retrieving randomized controlled trials (RCTs) was developed (the “Cochr...
Autores principales: | Thomas, James, McDonald, Steve, Noel-Storr, Anna, Shemilt, Ian, Elliott, Julian, Mavergames, Chris, Marshall, Iain J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168828/ https://www.ncbi.nlm.nih.gov/pubmed/33171275 http://dx.doi.org/10.1016/j.jclinepi.2020.11.003 |
Ejemplares similares
-
Machine learning reduced workload for the Cochrane COVID-19 Study Register: development and evaluation of the Cochrane COVID-19 Study Classifier
por: Shemilt, Ian, et al.
Publicado: (2022) -
Producing Cochrane systematic reviews—a qualitative study of current approaches and opportunities for innovation and improvement
por: Turner, Tari, et al.
Publicado: (2017) -
Issues in the incorporation of economic perspectives and evidence into Cochrane reviews
por: Shemilt, Ian, et al.
Publicado: (2013) -
Crowdsourcing the identification of studies for COVID‐19‐related Cochrane Rapid Reviews
por: Noel‐Storr, Anna, et al.
Publicado: (2022) -
Study flow diagrams in Cochrane systematic review updates: an adapted PRISMA flow diagram
por: Stovold, Elizabeth, et al.
Publicado: (2014)