Cargando…
Model building and assessment of the impact of covariates for disease prevalence mapping in low-resource settings: to explain and to predict
This paper provides statistical guidance on the development and application of model-based geostatistical methods for disease prevalence mapping. We illustrate the different stages of the analysis, from exploratory analysis to spatial prediction of prevalence, through a case study on malaria mapping...
Autores principales: | Giorgi, Emanuele, Fronterrè, Claudio, Macharia, Peter M., Alegana, Victor A., Snow, Robert W., Diggle, Peter J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8169216/ https://www.ncbi.nlm.nih.gov/pubmed/34062104 http://dx.doi.org/10.1098/rsif.2021.0104 |
Ejemplares similares
-
Rethinking neglected tropical disease prevalence survey design and analysis: a geospatial paradigm
por: Diggle, Peter J, et al.
Publicado: (2021) -
Defining service catchment areas in low-resource settings
por: Macharia, Peter M, et al.
Publicado: (2021) -
Model-based geostatistics enables more precise estimates of neglected
tropical-disease prevalence in elimination settings: mapping trachoma prevalence in
Ethiopia
por: Amoah, Benjamin, et al.
Publicado: (2021) -
Correction to: Model-based geostatistics enables more precise estimates of neglected tropical-disease prevalence in elimination settings: mapping trachoma prevalence in Ethiopia
por: Amoah, Benjamin, et al.
Publicado: (2022) -
MBGapp: A Shiny application for teaching model-based geostatistics to population health scientists
por: Johnson, Olatunji, et al.
Publicado: (2021)