Cargando…

Lung segmentation and automatic detection of COVID-19 using radiomic features from chest CT images

This paper aims to develop an automatic method to segment pulmonary parenchyma in chest CT images and analyze texture features from the segmented pulmonary parenchyma regions to assist radiologists in COVID-19 diagnosis. A new segmentation method, which integrates a three-dimensional (3D) V-Net with...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Chen, Xu, Yan, He, Zhuo, Tang, Jinshan, Zhang, Yijun, Han, Jungang, Shi, Yuxin, Zhou, Weihua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8169223/
https://www.ncbi.nlm.nih.gov/pubmed/34092815
http://dx.doi.org/10.1016/j.patcog.2021.108071
Descripción
Sumario:This paper aims to develop an automatic method to segment pulmonary parenchyma in chest CT images and analyze texture features from the segmented pulmonary parenchyma regions to assist radiologists in COVID-19 diagnosis. A new segmentation method, which integrates a three-dimensional (3D) V-Net with a shape deformation module implemented using a spatial transform network (STN), was proposed to segment pulmonary parenchyma in chest CT images. The 3D V-Net was adopted to perform an end-to-end lung extraction while the deformation module was utilized to refine the V-Net output according to the prior shape knowledge. The proposed segmentation method was validated against the manual annotation generated by experienced operators. The radiomic features measured from our segmentation results were further analyzed by sophisticated statistical models with high interpretability to discover significant independent features and detect COVID-19 infection. Experimental results demonstrated that compared with the manual annotation, the proposed segmentation method achieved a Dice similarity coefficient of 0.9796, a sensitivity of 0.9840, a specificity of 0.9954, and a mean surface distance error of 0.0318 mm. Furthermore, our COVID-19 classification model achieved an area under curve (AUC) of 0.9470, a sensitivity of 0.9670, and a specificity of 0.9270 when discriminating lung infection with COVID-19 from community-acquired pneumonia and healthy controls using statistically significant radiomic features. The significant features measured from our segmentation results agreed well with those from the manual annotation. Our approach has great promise for clinical use in facilitating automatic diagnosis of COVID-19 infection on chest CT images.