Cargando…
Lung segmentation and automatic detection of COVID-19 using radiomic features from chest CT images
This paper aims to develop an automatic method to segment pulmonary parenchyma in chest CT images and analyze texture features from the segmented pulmonary parenchyma regions to assist radiologists in COVID-19 diagnosis. A new segmentation method, which integrates a three-dimensional (3D) V-Net with...
Autores principales: | Zhao, Chen, Xu, Yan, He, Zhuo, Tang, Jinshan, Zhang, Yijun, Han, Jungang, Shi, Yuxin, Zhou, Weihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8169223/ https://www.ncbi.nlm.nih.gov/pubmed/34092815 http://dx.doi.org/10.1016/j.patcog.2021.108071 |
Ejemplares similares
-
Automatic pulmonary fissure detection and lobe segmentation in CT chest images
por: Qi, Shouliang, et al.
Publicado: (2014) -
Application of nnU-Net for Automatic Segmentation of Lung Lesions on CT Images and Its Implication for Radiomic Models
por: Ferrante, Matteo, et al.
Publicado: (2022) -
Automatic Initialization Active Contour Model for the Segmentation of the Chest Wall on Chest CT
por: Choi, Seokyoon, et al.
Publicado: (2010) -
Radiomics feature reproducibility under inter-rater variability in segmentations of CT images
por: Haarburger, Christoph, et al.
Publicado: (2020) -
CNN-based automatic segmentations and radiomics feature reliability on contrast-enhanced ultrasound images for renal tumors
por: Yang, Yin, et al.
Publicado: (2023)