Cargando…
D2A U-Net: Automatic segmentation of COVID-19 CT slices based on dual attention and hybrid dilated convolution
Coronavirus Disease 2019 (COVID-19) has become one of the most urgent public health events worldwide due to its high infectivity and mortality. Computed tomography (CT) is a significant screening tool for COVID-19 infection, and automatic segmentation of lung infection in COVID-19 CT images can assi...
Autores principales: | Zhao, Xiangyu, Zhang, Peng, Song, Fan, Fan, Guangda, Sun, Yangyang, Wang, Yujia, Tian, Zheyuan, Zhang, Luqi, Zhang, Guanglei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8169238/ https://www.ncbi.nlm.nih.gov/pubmed/34146799 http://dx.doi.org/10.1016/j.compbiomed.2021.104526 |
Ejemplares similares
-
PDC-Net: parallel dilated convolutional network with channel attention mechanism for pituitary adenoma segmentation
por: Zhang, Qile, et al.
Publicado: (2023) -
DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022) -
Correction: DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022) -
Automatic Segmentation of Lumbar Spine MRI Images Based on Improved Attention U-Net
por: Wang, Shuai, et al.
Publicado: (2022) -
DUDA-Net: a double U-shaped dilated attention network for automatic infection area segmentation in COVID-19 lung CT images
por: Xie, Feng, et al.
Publicado: (2021)