Cargando…
Improved machine learning performances with transfer learning to predicting need for hospitalization in arboviral infections against the small dataset
The prediction of hospital patients and outpatients with suspected arboviral infection individuals in research-limited settings of the urban areas is defined as a challenging process for clinicians. Dengue, Chikungunya, and Zika arboviruses have gained attention in recent years because of the high p...
Autores principales: | Ozer, Ilyas, Cetin, Onursal, Gorur, Kutlucan, Temurtas, Feyzullah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8169423/ https://www.ncbi.nlm.nih.gov/pubmed/34092929 http://dx.doi.org/10.1007/s00521-021-06133-0 |
Ejemplares similares
-
Fourier Synchrosqueezing Transform-ICA-EMD Framework Based EOG-Biometric Sustainable and Continuous Authentication via Voluntary Eye Blinking Activities
por: Gorur, Kutlucan
Publicado: (2023) -
Machine learning and deep learning techniques to support clinical diagnosis of arboviral diseases: A systematic review
por: da Silva Neto, Sebastião Rogério, et al.
Publicado: (2022) -
Transfer Learning on Small Datasets for Improved Fall Detection
por: Maray, Nader, et al.
Publicado: (2023) -
A decade of arboviral activity—Lessons learned from the trenches
por: Powers, Ann M., et al.
Publicado: (2017) -
Severity Index for Suspected Arbovirus (SISA): Machine learning for accurate prediction of hospitalization in subjects suspected of arboviral infection
por: Sippy, Rachel, et al.
Publicado: (2020)