Cargando…
Comprehensive machine learning based study of the chemical space of herbicides
Widespread use of herbicides results in the global increase in weed resistance. The rotational use of herbicides according to their modes of action (MoAs) and discovery of novel phytotoxic molecules are the two strategies used against the weed resistance. Herein, Random Forest modeling was used to b...
Autores principales: | Oršolić, Davor, Pehar, Vesna, Šmuc, Tomislav, Stepanić, Višnja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8169684/ https://www.ncbi.nlm.nih.gov/pubmed/34075109 http://dx.doi.org/10.1038/s41598-021-90690-w |
Ejemplares similares
-
Dynamic applicability domain (dAD): compound–target binding affinity estimates with local conformal prediction
por: Oršolić, Davor, et al.
Publicado: (2023) -
Combined Machine Learning and Molecular Modelling Workflow for the Recognition of Potentially Novel Fungicides
por: Jović, Ozren, et al.
Publicado: (2020) -
Modulators of Oxidative Stress: Chemical and Pharmacological Aspects
por: Saso, Luciano, et al.
Publicado: (2020) -
Machine learning in chemical reaction space
por: Stocker, Sina, et al.
Publicado: (2020) -
From Knowledge Transmission to Knowledge Construction: A Step towards Human-Like Active Learning
por: Kulikovskikh, Ilona, et al.
Publicado: (2020)