Cargando…
DHODH inhibition modulates glucose metabolism and circulating GDF15, and improves metabolic balance
Dihydroorotate dehydrogenase (DHODH) is essential for the de novo synthesis of pyrimidine ribonucleotides, and as such, its inhibitors have been long used to treat autoimmune diseases and are in clinical trials for cancer and viral infections. Interestingly, DHODH is located in the inner mitochondri...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8169992/ https://www.ncbi.nlm.nih.gov/pubmed/34113829 http://dx.doi.org/10.1016/j.isci.2021.102494 |
Sumario: | Dihydroorotate dehydrogenase (DHODH) is essential for the de novo synthesis of pyrimidine ribonucleotides, and as such, its inhibitors have been long used to treat autoimmune diseases and are in clinical trials for cancer and viral infections. Interestingly, DHODH is located in the inner mitochondrial membrane and contributes to provide ubiquinol to the respiratory chain. Thus, DHODH provides the link between nucleotide metabolism and mitochondrial function. Here we show that pharmacological inhibition of DHODH reduces mitochondrial respiration, promotes glycolysis, and enhances GLUT4 translocation to the cytoplasmic membrane and that by activating tumor suppressor p53, increases the expression of GDF15, a cytokine that reduces appetite and prolongs lifespan. In addition, similar to the antidiabetic drug metformin, we observed that in db/db mice, DHODH inhibitors elevate levels of circulating GDF15 and reduce food intake. Further analysis using this model for obesity-induced diabetes revealed that DHODH inhibitors delay pancreatic β cell death and improve metabolic balance. |
---|