Cargando…
A hybrid feature selection model based on improved squirrel search algorithm and rank aggregation using fuzzy techniques for biomedical data classification
Feature selection has gained its importance due to the voluminous nature of the data. Owing to the computational complexity of wrapper approaches, the poor performance of filtering techniques, and the classifier dependency of embedded approaches, hybrid approaches are more commonly used in feature s...
Autores principales: | Nagarajan, Gayathri, Dhinesh Babu, L. D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170065/ https://www.ncbi.nlm.nih.gov/pubmed/34094808 http://dx.doi.org/10.1007/s13721-021-00313-7 |
Ejemplares similares
-
Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study
por: Najdi, Shirin, et al.
Publicado: (2017) -
Hybrid algorithms, techniques and implementations of fuzzy logic
por: Stanimirovic, Ivan
Publicado: (2019) -
A fuzzy co-clustering algorithm for biomedical data
por: Liu, Yongli, et al.
Publicado: (2017) -
RankAggreg, an R package for weighted rank aggregation
por: Pihur, Vasyl, et al.
Publicado: (2009) -
A fuzzy rank-based ensemble of CNN models for classification of cervical cytology
por: Manna, Ankur, et al.
Publicado: (2021)