Cargando…
μBrain: An Event-Driven and Fully Synthesizable Architecture for Spiking Neural Networks
The development of brain-inspired neuromorphic computing architectures as a paradigm for Artificial Intelligence (AI) at the edge is a candidate solution that can meet strict energy and cost reduction constraints in the Internet of Things (IoT) application areas. Toward this goal, we present μBrain:...
Autores principales: | Stuijt, Jan, Sifalakis, Manolis, Yousefzadeh, Amirreza, Corradi, Federico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170091/ https://www.ncbi.nlm.nih.gov/pubmed/34093116 http://dx.doi.org/10.3389/fnins.2021.664208 |
Ejemplares similares
-
SENECA: building a fully digital neuromorphic processor, design trade-offs and challenges
por: Tang, Guangzhi, et al.
Publicado: (2023) -
A Configurable and Fully Synthesizable RTL-Based Convolutional Neural Network for Biosensor Applications
por: Kumar, Pervesh, et al.
Publicado: (2022) -
Synthesizable VHDL design for FPGAs
por: Bezerra, Eduardo Augusto, et al.
Publicado: (2014) -
Network analysis of synthesizable materials discovery
por: Aykol, Muratahan, et al.
Publicado: (2019) -
Robust and synthesizable photocatalysts for CO(2) reduction: a data-driven materials discovery
por: Singh, Arunima K., et al.
Publicado: (2019)