Cargando…
Data on the identification of VRK2 as a mediator of PD-1 function
Therapeutic programmed cell death protein 1 (PD-1) blockade enhances T cell mediated anti-tumor immunity, but many patients do not respond, and a significant proportion develops inflammatory toxicities. To develop better therapeutics and to understand the signaling pathways downstream of PD-1 we per...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170101/ https://www.ncbi.nlm.nih.gov/pubmed/34113705 http://dx.doi.org/10.1016/j.dib.2021.107168 |
Sumario: | Therapeutic programmed cell death protein 1 (PD-1) blockade enhances T cell mediated anti-tumor immunity, but many patients do not respond, and a significant proportion develops inflammatory toxicities. To develop better therapeutics and to understand the signaling pathways downstream of PD-1 we performed phosphoproteomic interrogation of PD-1 to identify key mediators of PD-1 signaling. Hereby, supporting data of the research article “VRK2 inhibition synergizes with PD-1 blockade to improve T cell responses” are presented. In the primary publication, we proposed that VRK2 is a unique therapeutic target and that combination of VRK2 inhibitors with PD-1 blockade may improve cancer immunotherapy. Here, we provide data on the effect of other kinases on PD-1 signaling utilizing shRNA knockdown of the different kinases in Jurkat T cells. In addition, we used VRK2 inhibition by a pharmacologic approach in the MC38 tumor mouse model, to show the combined outcome of anti PD-1 treatment with VRK2 inhibition. These data provide additional targets downstream PD-1 and point toward methods of testing the effect of the inhibition of these targets on tumor progression in vivo. |
---|