Cargando…
The marker of cobalamin deficiency, plasma methylmalonic acid, may help identifying lysosomal iron trapping in patients. Its possible utility for heart failure
Iron deficiency is known to aggravate the prognosis of patients with heart failure. Iron has functions in the mitochondrial respiratory chain. In patients with reduced mitochondrial respiration, the mitochondrial ratio between the level of nicotinamide adenine dinucleotide and its reduced form decre...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170149/ https://www.ncbi.nlm.nih.gov/pubmed/34049219 http://dx.doi.org/10.1016/j.redox.2021.102011 |
Sumario: | Iron deficiency is known to aggravate the prognosis of patients with heart failure. Iron has functions in the mitochondrial respiratory chain. In patients with reduced mitochondrial respiration, the mitochondrial ratio between the level of nicotinamide adenine dinucleotide and its reduced form decreases. Due to the mitochondrial-lysosomal interplay, decreased mitochondrial respiration also leads to inhibition of lysosomal hydrolysis. As a result, cobalamin and iron will be trapped in lysosomes. This will, even if iron and cobalamin have been consumed and absorbed in sufficient amounts, lead to their functional deficiencies. Functional iron deficiency can further impede mitochondrial respiration. Increased plasma levels of methylmalonic acid were shown to predict all-cause and cardiovascular mortality in the general population. Treatments targeting mitochondrial and lysosomal function may correct the functional deficiencies and improve prognosis in a subgroup of patients with heart failure, notably those with skeletal muscle wasting. Methylmalonic acid levels may be used for monitoring response to treatment, thereby identifying patients of the subgroup in which disease outcome may improve. |
---|