Cargando…

FDG-PET in presymptomatic C9orf72 mutation carriers

OBJECTIVE: Our aim is to investigate patterns of brain glucose metabolism using fluorodeoxyglucose positron emission tomography (FDG-PET) in presymptomatic carriers of the C9orf72 repeat expansion to better understand the early preclinical stages of frontotemporal dementia (FTD). METHODS: Structural...

Descripción completa

Detalles Bibliográficos
Autores principales: Popuri, Karteek, Beg, Mirza Faisal, Lee, Hyunwoo, Balachandar, Rakesh, Wang, Lei, Sossi, Vesna, Jacova, Claudia, Baker, Matt, Shahinfard, Elham, Rademakers, Rosa, Mackenzie, Ian R.A., Hsiung, Ging-Yuek R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170157/
https://www.ncbi.nlm.nih.gov/pubmed/34049163
http://dx.doi.org/10.1016/j.nicl.2021.102687
Descripción
Sumario:OBJECTIVE: Our aim is to investigate patterns of brain glucose metabolism using fluorodeoxyglucose positron emission tomography (FDG-PET) in presymptomatic carriers of the C9orf72 repeat expansion to better understand the early preclinical stages of frontotemporal dementia (FTD). METHODS: Structural MRI and FDG-PET were performed on clinically asymptomatic members of families with FTD caused by the C9orf72 repeat expansion (15 presymptomatic mutation carriers, C9orf72+; 20 non-carriers, C9orf72-). Regional glucose metabolism in cerebral and cerebellar gray matter was compared between groups. RESULTS: The mean age of the C9orf72+ and C9orf72- groups were 45.3 ± 10.6 and 56.0 ± 11.0 years respectively, and the mean age of FTD onset in their families was 56 ± 7 years. Compared to non-carrier controls, the C9orf72+ group exhibited regional hypometabolism, primarily involving the cingulate gyrus, frontal and temporal neocortices (left > right) and bilateral thalami. CONCLUSIONS: The C9orf72 repeat expansion is associated with changes in brain glucose metabolism that are demonstrable up to 10 years prior to symptom onset and before changes in gray matter volume become significant. These findings indicate that FDG-PET may be a particularly sensitive and useful method for investigating and monitoring the earliest stages of FTD in individuals with this underlying genetic basis.