Cargando…
Artificial Neural Network Analyzing Wearable Device Gait Data for Identifying Patients With Stroke Unable to Return to Work
A potential dramatic effect of long-term disability due to stroke is the inability to return to work. An accurate prognosis and the identification of the parameters inflating the possibility of return to work after neurorehabilitation are crucial. Many factors may influence it, such as mobility and,...
Autores principales: | Iosa, Marco, Capodaglio, Edda, Pelà, Silvia, Persechino, Benedetta, Morone, Giovanni, Antonucci, Gabriella, Paolucci, Stefano, Panigazzi, Monica |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170310/ https://www.ncbi.nlm.nih.gov/pubmed/34093396 http://dx.doi.org/10.3389/fneur.2021.650542 |
Ejemplares similares
-
Return to Work and Quality of Life after Stroke in Italy: A Study on the Efficacy of Technologically Assisted Neurorehabilitation
por: Ghanbari Ghoshchi, Sheyda, et al.
Publicado: (2020) -
Application of an Artificial Neural Network to Identify the Factors Influencing Neurorehabilitation Outcomes of Patients with Ischemic Stroke Treated with Thrombolysis
por: Iosa, Marco, et al.
Publicado: (2023) -
Artificial Neural Network Detects Hip Muscle Forces as Determinant for Harmonic Walking in People after Stroke
por: Iosa, Marco, et al.
Publicado: (2022) -
Prognostic Factors in Neurorehabilitation of Stroke: A Comparison among Regression, Neural Network, and Cluster Analyses
por: Iosa, Marco, et al.
Publicado: (2021) -
Computer-assisted cognitive rehabilitation in neurological patients: state-of-art and future perspectives
por: Maggio, Maria Grazia, et al.
Publicado: (2023)