Cargando…
A novel self-learning semi-supervised deep learning network to detect fake news on social media
Social media has become a popular means for people to consume and share news. However, it also enables the extensive spread of fake news, that is, news that deliberately provides false information, which has a significant negative impact on society. Especially recently, the false information about t...
Autores principales: | Li, Xin, Lu, Peixin, Hu, Lianting, Wang, XiaoGuang, Lu, Long |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170457/ https://www.ncbi.nlm.nih.gov/pubmed/34093070 http://dx.doi.org/10.1007/s11042-021-11065-x |
Ejemplares similares
-
Supervised ensemble learning methods towards automatically filtering Urdu fake news within social media
por: Akhter, Muhammad Pervez, et al.
Publicado: (2021) -
Two-step learning for crowdsourcing data classification
por: Yu, Hao, et al.
Publicado: (2022) -
FakeBERT: Fake news detection in social media with a BERT-based deep learning approach
por: Kaliyar, Rohit Kumar, et al.
Publicado: (2021) -
Deep Reads: Strands in the History of Molecular Genetics
por: Chisholm, Andrew D.
Publicado: (2014) -
Deep Reads: Favorites from a Few Different Shelves
por: Hamilton, Bruce A.
Publicado: (2016)