Cargando…
Deep learning applications in automatic segmentation and reconstruction in CT-based cervix brachytherapy
PURPOSE: Motivated by recent advances in deep learning, the purpose of this study was to investigate a deep learning method in automatic segment and reconstruct applicators in computed tomography (CT) images for cervix brachytherapy treatment planning. MATERIAL AND METHODS: U-Net model was developed...
Autores principales: | Hu, Hai, Yang, Qiang, Li, Jie, Wang, Pei, Tang, Bin, Wang, Xianliang, Lang, Jinyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Termedia Publishing House
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170523/ https://www.ncbi.nlm.nih.gov/pubmed/34122573 http://dx.doi.org/10.5114/jcb.2021.106118 |
Ejemplares similares
-
Effect of the dwell time deviation constraint on brachytherapy treatment planning for cervical cancer
por: Yan, Gaoshu, et al.
Publicado: (2021) -
Automatic reconstruction of interstitial needles using CT images in post-operative cervical cancer brachytherapy based on deep learning
por: Xie, Hongling, et al.
Publicado: (2023) -
An Inverse Dose Optimization Algorithm for Three-Dimensional Brachytherapy
por: Wang, Xianliang, et al.
Publicado: (2020) -
Automatic segmentation and applicator reconstruction for CT‐based brachytherapy of cervical cancer using 3D convolutional neural networks
por: Zhang, Daguang, et al.
Publicado: (2020) -
Dosimetric study for cervix carcinoma treatment using intensity modulated radiation therapy (IMRT) compensation based on 3D intracavitary brachytherapy technique
por: Yin, Gang, et al.
Publicado: (2016)