Cargando…

RSM-based Model to Predict Optimum Fermentation Conditions for Soluble Expression of the Antibody Fragment Derived from 4D5MOC-B Humanized Mab in SHuffle™ T7 E. coli

Overexpression of the EpCAM in epithelial-derived neoplasms makes this receptor a promising target in antibody-based therapy. Due to the lack of N-glycosylation, Escherichia coli (E. coli) seems to be the most appropriate choice for the expression of antibody fragments. However, developing a robust...

Descripción completa

Detalles Bibliográficos
Autores principales: Behravan, Aidin, Hashemi, Atieh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shaheed Beheshti University of Medical Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170757/
https://www.ncbi.nlm.nih.gov/pubmed/34400955
http://dx.doi.org/10.22037/ijpr.2020.114377.14822
_version_ 1783702304945340416
author Behravan, Aidin
Hashemi, Atieh
author_facet Behravan, Aidin
Hashemi, Atieh
author_sort Behravan, Aidin
collection PubMed
description Overexpression of the EpCAM in epithelial-derived neoplasms makes this receptor a promising target in antibody-based therapy. Due to the lack of N-glycosylation, Escherichia coli (E. coli) seems to be the most appropriate choice for the expression of antibody fragments. However, developing a robust and cost-effective process that produces consistent therapeutic proteins from inclusion bodies is a major challenge. Undoubtedly, it can be circumvented by the soluble expression of these proteins. Utilization of numerous genetically modified hosts and optimization of cultivation conditions are two effective approaches widely used to overcome the insolubility problem. Due to the cytoplasmic expression of DsbC and the ability to the correct formation of disulfide bonds, the Shuffle™ T7 strain can be a suitable host for the soluble production of recombinant proteins. Here, Box-Behnken design (BBD)- Response surface methodology (RSM) modeling was employed to develop optimized culture conditions for 4D5MOC-B scFv fragment production in SHuffle™ T7 strain while solubility and production level were considered as responses. Although both responses were significantly influenced by post-induction temperature, cell density at induction time, and IPTG concentration, the temperature had the largest effect. The maximum experimental soluble protein obtained by adding 1 mM of IPTG into the M9 medium when the cell density reached 0.7 at 23 ᵒC was 693.56 µg/mL which was in good correlation with the predicted value of 720.742 µg/mL. Predictable total expression value was also experimentally verified. This strategy can be scaled-up for the production of large amounts of scFvs from SHuffle™ T7 E. coli to facilitate their potential applications as therapeutic and diagnostic agents.
format Online
Article
Text
id pubmed-8170757
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Shaheed Beheshti University of Medical Sciences
record_format MEDLINE/PubMed
spelling pubmed-81707572021-08-15 RSM-based Model to Predict Optimum Fermentation Conditions for Soluble Expression of the Antibody Fragment Derived from 4D5MOC-B Humanized Mab in SHuffle™ T7 E. coli Behravan, Aidin Hashemi, Atieh Iran J Pharm Res Original Article Overexpression of the EpCAM in epithelial-derived neoplasms makes this receptor a promising target in antibody-based therapy. Due to the lack of N-glycosylation, Escherichia coli (E. coli) seems to be the most appropriate choice for the expression of antibody fragments. However, developing a robust and cost-effective process that produces consistent therapeutic proteins from inclusion bodies is a major challenge. Undoubtedly, it can be circumvented by the soluble expression of these proteins. Utilization of numerous genetically modified hosts and optimization of cultivation conditions are two effective approaches widely used to overcome the insolubility problem. Due to the cytoplasmic expression of DsbC and the ability to the correct formation of disulfide bonds, the Shuffle™ T7 strain can be a suitable host for the soluble production of recombinant proteins. Here, Box-Behnken design (BBD)- Response surface methodology (RSM) modeling was employed to develop optimized culture conditions for 4D5MOC-B scFv fragment production in SHuffle™ T7 strain while solubility and production level were considered as responses. Although both responses were significantly influenced by post-induction temperature, cell density at induction time, and IPTG concentration, the temperature had the largest effect. The maximum experimental soluble protein obtained by adding 1 mM of IPTG into the M9 medium when the cell density reached 0.7 at 23 ᵒC was 693.56 µg/mL which was in good correlation with the predicted value of 720.742 µg/mL. Predictable total expression value was also experimentally verified. This strategy can be scaled-up for the production of large amounts of scFvs from SHuffle™ T7 E. coli to facilitate their potential applications as therapeutic and diagnostic agents. Shaheed Beheshti University of Medical Sciences 2021 /pmc/articles/PMC8170757/ /pubmed/34400955 http://dx.doi.org/10.22037/ijpr.2020.114377.14822 Text en https://creativecommons.org/licenses/by/3.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/ (https://creativecommons.org/licenses/by/3.0/) ) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Behravan, Aidin
Hashemi, Atieh
RSM-based Model to Predict Optimum Fermentation Conditions for Soluble Expression of the Antibody Fragment Derived from 4D5MOC-B Humanized Mab in SHuffle™ T7 E. coli
title RSM-based Model to Predict Optimum Fermentation Conditions for Soluble Expression of the Antibody Fragment Derived from 4D5MOC-B Humanized Mab in SHuffle™ T7 E. coli
title_full RSM-based Model to Predict Optimum Fermentation Conditions for Soluble Expression of the Antibody Fragment Derived from 4D5MOC-B Humanized Mab in SHuffle™ T7 E. coli
title_fullStr RSM-based Model to Predict Optimum Fermentation Conditions for Soluble Expression of the Antibody Fragment Derived from 4D5MOC-B Humanized Mab in SHuffle™ T7 E. coli
title_full_unstemmed RSM-based Model to Predict Optimum Fermentation Conditions for Soluble Expression of the Antibody Fragment Derived from 4D5MOC-B Humanized Mab in SHuffle™ T7 E. coli
title_short RSM-based Model to Predict Optimum Fermentation Conditions for Soluble Expression of the Antibody Fragment Derived from 4D5MOC-B Humanized Mab in SHuffle™ T7 E. coli
title_sort rsm-based model to predict optimum fermentation conditions for soluble expression of the antibody fragment derived from 4d5moc-b humanized mab in shuffle™ t7 e. coli
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170757/
https://www.ncbi.nlm.nih.gov/pubmed/34400955
http://dx.doi.org/10.22037/ijpr.2020.114377.14822
work_keys_str_mv AT behravanaidin rsmbasedmodeltopredictoptimumfermentationconditionsforsolubleexpressionoftheantibodyfragmentderivedfrom4d5mocbhumanizedmabinshufflet7ecoli
AT hashemiatieh rsmbasedmodeltopredictoptimumfermentationconditionsforsolubleexpressionoftheantibodyfragmentderivedfrom4d5mocbhumanizedmabinshufflet7ecoli