Cargando…

Cetuximab-decorated and NIR-activated Nanoparticles Based on Platinum(IV)-prodrug: Preparation, Characterization and In-vitro Anticancer Activity in Epidermoid Carcinoma Cells

Platinum-based drugs are the mainstay of chemotherapy regimens in a clinic, but their use is seriously limited by severe side effects and drug resistance. A cetuximab-decorated drug delivery system can selectively deliver drugs into EGFR-highexpressing cancer cells to prevent the shortcomings of pla...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yu, Zhang, Xin-Ming, Sun, Yu, Chen, Hui-Lin, Zhou, Ling-Yun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shaheed Beheshti University of Medical Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170758/
https://www.ncbi.nlm.nih.gov/pubmed/34400966
http://dx.doi.org/10.22037/ijpr.2020.113439.14303
Descripción
Sumario:Platinum-based drugs are the mainstay of chemotherapy regimens in a clinic, but their use is seriously limited by severe side effects and drug resistance. A cetuximab-decorated drug delivery system can selectively deliver drugs into EGFR-highexpressing cancer cells to prevent the shortcomings of platinum-based chemotherapy. Here, cetuximab-decorated and near-infrared (NIR)-activated nanoparticles based on Pt(IV)-prodrug (abbreviated as Cetuximab-Pt-INPs) was constructed. First, PEGylated Pt(IV)-prodrug was synthesized by a condensation reaction between c,c,t-[Pt(NH(3))(2)Cl(2)(OOCCH(2)CH(2)COOH)(OH)] and MPEG-PLA. Then, Pt(IV)-prodrug and indocyanine green co-encapsulated nanoparticles (Pt-INPs) were prepared through an ultrasonic emulsification method. Finally, Cetuximab-Pt-INPs were obtained by decorating Pt-INPs with cetuximab as a targeting vector. The optimized Cetuximab-Pt-INPs exhibited a spherical core-shell shape of 138.5 ± 0.96 nm. In-vitro cellular uptake and cytotoxicity assays revealed that more Cetuximab-Pt-INPs with NIR irradiation were selectively taken up by A431 cells, thereby leading to higher cytotoxicity. These multifunctional nanoparticles may have promising potential for targeted and effective therapy against EGFR-highexpressing cells of epidermoid carcinoma.