Cargando…
Methodology for comprehensive cell-level analysis of wound healing experiments using deep learning in MATLAB
BACKGROUND: Endothelial healing after deployment of cardiovascular devices is particularly important in the context of clinical outcome. It is therefore of great interest to develop tools for a precise prediction of endothelial growth after injury in the process of implant deployment. For experiment...
Autores principales: | Oldenburg, Jan, Maletzki, Lisa, Strohbach, Anne, Bellé, Paul, Siewert, Stefan, Busch, Raila, Felix, Stephan B., Schmitz, Klaus-Peter, Stiehm, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170781/ https://www.ncbi.nlm.nih.gov/pubmed/34078283 http://dx.doi.org/10.1186/s12860-021-00369-3 |
Ejemplares similares
-
Predicting the In Vivo Performance of Cardiovascular Biomaterials: Current Approaches In Vitro Evaluation of Blood-Biomaterial Interactions
por: Strohbach, Anne, et al.
Publicado: (2021) -
The Role of Biodegradable Poly-(L-lactide)-Based Polymers in Blood Cell Activation and Platelet-Monocyte Interaction
por: Strohbach, Anne, et al.
Publicado: (2021) -
Biodegradable Polymers Influence the Effect of Atorvastatin on Human Coronary Artery Cells
por: Strohbach, Anne, et al.
Publicado: (2016) -
Studying Cell Migration (Random and Wound Healing) Parameters with Imaging and MATLAB Analysis
por: Yu, Ling-Yea, et al.
Publicado: (2023) -
CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation
por: Hodneland, Erlend, et al.
Publicado: (2013)