Cargando…
PIKE-R2P: Protein–protein interaction network-based knowledge embedding with graph neural network for single-cell RNA to protein prediction
BACKGROUND: Recent advances in simultaneous measurement of RNA and protein abundances at single-cell level provide a unique opportunity to predict protein abundance from scRNA-seq data using machine learning models. However, existing machine learning methods have not considered relationship among th...
Autores principales: | Dai, Xinnan, Xu, Fan, Wang, Shike, Mundra, Piyushkumar A., Zheng, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170782/ https://www.ncbi.nlm.nih.gov/pubmed/34078261 http://dx.doi.org/10.1186/s12859-021-04022-w |
Ejemplares similares
-
Graph-based prediction of Protein-protein interactions with attributed signed graph embedding
por: Yang, Fang, et al.
Publicado: (2020) -
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023) -
Predicting combinations of drugs by exploiting graph embedding of heterogeneous networks
por: Song, Fei, et al.
Publicado: (2022) -
Predicting functions of maize proteins using graph convolutional network
por: Zhou, Guangjie, et al.
Publicado: (2020) -
Prediction of protein–protein interaction using graph neural networks
por: Jha, Kanchan, et al.
Publicado: (2022)