Cargando…

circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR-29c-3p-mediated AMPK/mTOR pathway in Parkinson's disease

Parkinson's disease (PD) can lead to movement injury and cognitive dysfunction. Although advances have been made in attenuating PD, the effect of inhibiting the development of PD remains disappointing. Therefore, the present study aimed at investigating the etiology of Parkinson's disease...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Wensheng, Lv, Rongxiang, Zhang, Jingjing, Liu, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170871/
https://www.ncbi.nlm.nih.gov/pubmed/34080649
http://dx.doi.org/10.3892/mmr.2021.12179
_version_ 1783702324235993088
author Wang, Wensheng
Lv, Rongxiang
Zhang, Jingjing
Liu, Yu
author_facet Wang, Wensheng
Lv, Rongxiang
Zhang, Jingjing
Liu, Yu
author_sort Wang, Wensheng
collection PubMed
description Parkinson's disease (PD) can lead to movement injury and cognitive dysfunction. Although advances have been made in attenuating PD, the effect of inhibiting the development of PD remains disappointing. Therefore, the present study aimed at investigating the etiology of Parkinson's disease and developing an alternative therapeutic strategy for patients with PD. A PD mouse model was established using an intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP-HCl; 30 mg/kg/day for 5 days), and a PD cellular model was established by treating SH-SY5Y cells with different concentrations of 1-methyl-4-phenylpyridinium (MPP(+)) for 24 h. The expression levels of circular RNA sterile α motif domain containing 4A (circSAMD4A) and microRNA (miR)-29c-3p in both midbrain tissues and SH-SY5Y cells were detected via reverse transcription-quantitative PCR. The interaction between circSAMD4A and miR-29c-3p was verified using a dual-luciferase reporter experiment. Apoptosis-, autophagy- and 5′AMP-activated protein kinase (AMPK)/mTOR cascade-associated proteins in midbrain tissues and SH-SY5Y cells were detected using western blotting. Furthermore, TUNEL staining and flow cytometry were used to analyze cell apoptosis. It was found that circSAMD4A was upregulated, while miR-29c-3p was downregulated in both PD animal and cellular models. Moreover, circSAMD4A directly targeted and negatively regulated miR-29c-3p. Further studies identified that circSAMD4A knockdown inhibited MPTP- or MPP(+)-induced apoptosis and autophagy; however, these effects were abolished by an miR-29c-3p inhibitor. In addition, circSAMD4A knockdown repressed phosphorylated-AMPK expression and increased mTOR expression in MPTP- or MPP(+)-induced PD models, the effects of which were reversed by a miR-29c-3p inhibitor. Collectively, these results suggested that circSAMD4A participated in the apoptosis and autophagy of dopaminergic neurons by modulating the AMPK/mTOR cascade via miR-29c-3p in PD.
format Online
Article
Text
id pubmed-8170871
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-81708712021-06-04 circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR-29c-3p-mediated AMPK/mTOR pathway in Parkinson's disease Wang, Wensheng Lv, Rongxiang Zhang, Jingjing Liu, Yu Mol Med Rep Articles Parkinson's disease (PD) can lead to movement injury and cognitive dysfunction. Although advances have been made in attenuating PD, the effect of inhibiting the development of PD remains disappointing. Therefore, the present study aimed at investigating the etiology of Parkinson's disease and developing an alternative therapeutic strategy for patients with PD. A PD mouse model was established using an intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP-HCl; 30 mg/kg/day for 5 days), and a PD cellular model was established by treating SH-SY5Y cells with different concentrations of 1-methyl-4-phenylpyridinium (MPP(+)) for 24 h. The expression levels of circular RNA sterile α motif domain containing 4A (circSAMD4A) and microRNA (miR)-29c-3p in both midbrain tissues and SH-SY5Y cells were detected via reverse transcription-quantitative PCR. The interaction between circSAMD4A and miR-29c-3p was verified using a dual-luciferase reporter experiment. Apoptosis-, autophagy- and 5′AMP-activated protein kinase (AMPK)/mTOR cascade-associated proteins in midbrain tissues and SH-SY5Y cells were detected using western blotting. Furthermore, TUNEL staining and flow cytometry were used to analyze cell apoptosis. It was found that circSAMD4A was upregulated, while miR-29c-3p was downregulated in both PD animal and cellular models. Moreover, circSAMD4A directly targeted and negatively regulated miR-29c-3p. Further studies identified that circSAMD4A knockdown inhibited MPTP- or MPP(+)-induced apoptosis and autophagy; however, these effects were abolished by an miR-29c-3p inhibitor. In addition, circSAMD4A knockdown repressed phosphorylated-AMPK expression and increased mTOR expression in MPTP- or MPP(+)-induced PD models, the effects of which were reversed by a miR-29c-3p inhibitor. Collectively, these results suggested that circSAMD4A participated in the apoptosis and autophagy of dopaminergic neurons by modulating the AMPK/mTOR cascade via miR-29c-3p in PD. D.A. Spandidos 2021-07 2021-05-27 /pmc/articles/PMC8170871/ /pubmed/34080649 http://dx.doi.org/10.3892/mmr.2021.12179 Text en Copyright: © Wang et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Wang, Wensheng
Lv, Rongxiang
Zhang, Jingjing
Liu, Yu
circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR-29c-3p-mediated AMPK/mTOR pathway in Parkinson's disease
title circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR-29c-3p-mediated AMPK/mTOR pathway in Parkinson's disease
title_full circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR-29c-3p-mediated AMPK/mTOR pathway in Parkinson's disease
title_fullStr circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR-29c-3p-mediated AMPK/mTOR pathway in Parkinson's disease
title_full_unstemmed circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR-29c-3p-mediated AMPK/mTOR pathway in Parkinson's disease
title_short circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR-29c-3p-mediated AMPK/mTOR pathway in Parkinson's disease
title_sort circsamd4a participates in the apoptosis and autophagy of dopaminergic neurons via the mir-29c-3p-mediated ampk/mtor pathway in parkinson's disease
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170871/
https://www.ncbi.nlm.nih.gov/pubmed/34080649
http://dx.doi.org/10.3892/mmr.2021.12179
work_keys_str_mv AT wangwensheng circsamd4aparticipatesintheapoptosisandautophagyofdopaminergicneuronsviathemir29c3pmediatedampkmtorpathwayinparkinsonsdisease
AT lvrongxiang circsamd4aparticipatesintheapoptosisandautophagyofdopaminergicneuronsviathemir29c3pmediatedampkmtorpathwayinparkinsonsdisease
AT zhangjingjing circsamd4aparticipatesintheapoptosisandautophagyofdopaminergicneuronsviathemir29c3pmediatedampkmtorpathwayinparkinsonsdisease
AT liuyu circsamd4aparticipatesintheapoptosisandautophagyofdopaminergicneuronsviathemir29c3pmediatedampkmtorpathwayinparkinsonsdisease