Cargando…
Comparative analysis and prediction of nucleosome positioning using integrative feature representation and machine learning algorithms
BACKGROUND: Nucleosome plays an important role in the process of genome expression, DNA replication, DNA repair and transcription. Therefore, the research of nucleosome positioning has invariably received extensive attention. Considering the diversity of DNA sequence representation methods, we tried...
Autores principales: | Han, Guo-Sheng, Li, Qi, Li, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170966/ https://www.ncbi.nlm.nih.gov/pubmed/34078256 http://dx.doi.org/10.1186/s12859-021-04006-w |
Ejemplares similares
-
Nucleosome positioning based on DNA sequence embedding and deep learning
por: Han, Guo-Sheng, et al.
Publicado: (2022) -
Machine learning predicts nucleosome binding modes of transcription factors
por: Kishan, K. C., et al.
Publicado: (2021) -
Nucleosome Positioning with Set of Key Positions and Nucleosome Affinity
por: Wang, Jia, et al.
Publicado: (2014) -
Inter-nucleosomal potentials from nucleosomal positioning data
por: Li, Kunhe, et al.
Publicado: (2022) -
Nucleosome Positioning
por: Nishida, Hiromi
Publicado: (2012)