Cargando…
Boosting scRNA-seq data clustering by cluster-aware feature weighting
BACKGROUND: The rapid development of single-cell RNA sequencing (scRNA-seq) enables the exploration of cell heterogeneity, which is usually done by scRNA-seq data clustering. The essence of scRNA-seq data clustering is to group cells by measuring the similarities among genes/transcripts of cells. An...
Autores principales: | Li, Rui-Yi, Guan, Jihong, Zhou, Shuigeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8171019/ https://www.ncbi.nlm.nih.gov/pubmed/34078287 http://dx.doi.org/10.1186/s12859-021-04033-7 |
Ejemplares similares
-
Contrastive self-supervised clustering of scRNA-seq data
por: Ciortan, Madalina, et al.
Publicado: (2021) -
scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data
por: Wang, HaiYun, et al.
Publicado: (2022) -
A clustering method for small scRNA-seq data based on subspace and weighted distance
por: Ning, Zilan, et al.
Publicado: (2023) -
dropClust: efficient clustering of ultra-large scRNA-seq data
por: Sinha, Debajyoti, et al.
Publicado: (2018) -
MLG: multilayer graph clustering for multi-condition scRNA-seq data
por: Lu, Shan, et al.
Publicado: (2021)