Cargando…
A semi-supervised deep learning approach for predicting the functional effects of genomic non-coding variations
BACKGROUND: Understanding the functional effects of non-coding variants is important as they are often associated with gene-expression alteration and disease development. Over the past few years, many computational tools have been developed to predict their functional impact. However, the intrinsic...
Autores principales: | Jia, Hao, Park, Sung-Joon, Nakai, Kenta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8171027/ https://www.ncbi.nlm.nih.gov/pubmed/34078253 http://dx.doi.org/10.1186/s12859-021-03999-8 |
Ejemplares similares
-
Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease
por: Madani, Ali, et al.
Publicado: (2018) -
Deep semi-supervised learning for brain tumor classification
por: Ge, Chenjie, et al.
Publicado: (2020) -
A semi-supervised deep-learning approach for automatic crystal structure classification
por: Lolla, Satvik, et al.
Publicado: (2022) -
A semi-supervised approach for predicting cell-type specific functional consequences of non-coding variation using MPRAs
por: He, Zihuai, et al.
Publicado: (2018) -
Semi-supervised learning /
Publicado: (2010)