Cargando…

A simple vapor-diffusion method enables protein crystallization inside the HARE serial crystallography chip

Fixed-target serial crystallography has become an important method for the study of protein structure and dynamics at synchrotrons and X-ray free-electron lasers. However, sample homogeneity, consumption and the physical stress on samples remain major challenges for these high-throughput experiments...

Descripción completa

Detalles Bibliográficos
Autores principales: Norton-Baker, Brenna, Mehrabi, Pedram, Boger, Juliane, Schönherr, Robert, von Stetten, David, Schikora, Hendrik, Kwok, Ashley O., Martin, Rachel W., Miller, R. J. Dwayne, Redecke, Lars, Schulz, Eike C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8171066/
https://www.ncbi.nlm.nih.gov/pubmed/34076595
http://dx.doi.org/10.1107/S2059798321003855
_version_ 1783702359055007744
author Norton-Baker, Brenna
Mehrabi, Pedram
Boger, Juliane
Schönherr, Robert
von Stetten, David
Schikora, Hendrik
Kwok, Ashley O.
Martin, Rachel W.
Miller, R. J. Dwayne
Redecke, Lars
Schulz, Eike C.
author_facet Norton-Baker, Brenna
Mehrabi, Pedram
Boger, Juliane
Schönherr, Robert
von Stetten, David
Schikora, Hendrik
Kwok, Ashley O.
Martin, Rachel W.
Miller, R. J. Dwayne
Redecke, Lars
Schulz, Eike C.
author_sort Norton-Baker, Brenna
collection PubMed
description Fixed-target serial crystallography has become an important method for the study of protein structure and dynamics at synchrotrons and X-ray free-electron lasers. However, sample homogeneity, consumption and the physical stress on samples remain major challenges for these high-throughput experiments, which depend on high-quality protein microcrystals. The batch crystallization procedures that are typically applied require time- and sample-intensive screening and optimization. Here, a simple protein crystallization method inside the features of the HARE serial crystallography chips is reported that circumvents batch crystallization and allows the direct transfer of canonical vapor-diffusion conditions to in-chip crystallization. Based on conventional hanging-drop vapor-diffusion experiments, the crystallization solution is distributed into the wells of the HARE chip and equilibrated against a reservoir with mother liquor. Using this simple method, high-quality microcrystals were generated with sufficient density for the structure determination of four different proteins. A new protein variant was crystallized using the protein concentrations encountered during canonical crystallization experiments, enabling structure determination from ∼55 µg of protein. Additionally, structure determination from intracellular crystals grown in insect cells cultured directly in the features of the HARE chips is demonstrated. In cellulo crystallization represents a comparatively un­explored space in crystallization, especially for proteins that are resistant to crystallization using conventional techniques, and eliminates any need for laborious protein purification. This in-chip technique avoids harvesting the sensitive crystals or any further physical handling of the crystal-containing cells. These proof-of-principle experiments indicate the potential of this method to become a simple alternative to batch crystallization approaches and also as a convenient extension to canonical crystallization screens.
format Online
Article
Text
id pubmed-8171066
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher International Union of Crystallography
record_format MEDLINE/PubMed
spelling pubmed-81710662021-06-14 A simple vapor-diffusion method enables protein crystallization inside the HARE serial crystallography chip Norton-Baker, Brenna Mehrabi, Pedram Boger, Juliane Schönherr, Robert von Stetten, David Schikora, Hendrik Kwok, Ashley O. Martin, Rachel W. Miller, R. J. Dwayne Redecke, Lars Schulz, Eike C. Acta Crystallogr D Struct Biol Research Papers Fixed-target serial crystallography has become an important method for the study of protein structure and dynamics at synchrotrons and X-ray free-electron lasers. However, sample homogeneity, consumption and the physical stress on samples remain major challenges for these high-throughput experiments, which depend on high-quality protein microcrystals. The batch crystallization procedures that are typically applied require time- and sample-intensive screening and optimization. Here, a simple protein crystallization method inside the features of the HARE serial crystallography chips is reported that circumvents batch crystallization and allows the direct transfer of canonical vapor-diffusion conditions to in-chip crystallization. Based on conventional hanging-drop vapor-diffusion experiments, the crystallization solution is distributed into the wells of the HARE chip and equilibrated against a reservoir with mother liquor. Using this simple method, high-quality microcrystals were generated with sufficient density for the structure determination of four different proteins. A new protein variant was crystallized using the protein concentrations encountered during canonical crystallization experiments, enabling structure determination from ∼55 µg of protein. Additionally, structure determination from intracellular crystals grown in insect cells cultured directly in the features of the HARE chips is demonstrated. In cellulo crystallization represents a comparatively un­explored space in crystallization, especially for proteins that are resistant to crystallization using conventional techniques, and eliminates any need for laborious protein purification. This in-chip technique avoids harvesting the sensitive crystals or any further physical handling of the crystal-containing cells. These proof-of-principle experiments indicate the potential of this method to become a simple alternative to batch crystallization approaches and also as a convenient extension to canonical crystallization screens. International Union of Crystallography 2021-05-19 /pmc/articles/PMC8171066/ /pubmed/34076595 http://dx.doi.org/10.1107/S2059798321003855 Text en © Norton-Baker et al. 2021 https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
spellingShingle Research Papers
Norton-Baker, Brenna
Mehrabi, Pedram
Boger, Juliane
Schönherr, Robert
von Stetten, David
Schikora, Hendrik
Kwok, Ashley O.
Martin, Rachel W.
Miller, R. J. Dwayne
Redecke, Lars
Schulz, Eike C.
A simple vapor-diffusion method enables protein crystallization inside the HARE serial crystallography chip
title A simple vapor-diffusion method enables protein crystallization inside the HARE serial crystallography chip
title_full A simple vapor-diffusion method enables protein crystallization inside the HARE serial crystallography chip
title_fullStr A simple vapor-diffusion method enables protein crystallization inside the HARE serial crystallography chip
title_full_unstemmed A simple vapor-diffusion method enables protein crystallization inside the HARE serial crystallography chip
title_short A simple vapor-diffusion method enables protein crystallization inside the HARE serial crystallography chip
title_sort simple vapor-diffusion method enables protein crystallization inside the hare serial crystallography chip
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8171066/
https://www.ncbi.nlm.nih.gov/pubmed/34076595
http://dx.doi.org/10.1107/S2059798321003855
work_keys_str_mv AT nortonbakerbrenna asimplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT mehrabipedram asimplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT bogerjuliane asimplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT schonherrrobert asimplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT vonstettendavid asimplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT schikorahendrik asimplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT kwokashleyo asimplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT martinrachelw asimplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT millerrjdwayne asimplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT redeckelars asimplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT schulzeikec asimplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT nortonbakerbrenna simplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT mehrabipedram simplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT bogerjuliane simplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT schonherrrobert simplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT vonstettendavid simplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT schikorahendrik simplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT kwokashleyo simplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT martinrachelw simplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT millerrjdwayne simplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT redeckelars simplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip
AT schulzeikec simplevapordiffusionmethodenablesproteincrystallizationinsidethehareserialcrystallographychip