Cargando…
Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes
Rationale: The endemic of peri-implantitis affects over 25% of dental implants. Current treatment depends on empirical patient and site-based stratifications and lacks a consistent risk grading system. Methods: We investigated a unique cohort of peri-implantitis patients undergoing regenerative ther...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8171076/ https://www.ncbi.nlm.nih.gov/pubmed/34093848 http://dx.doi.org/10.7150/thno.57775 |
_version_ | 1783702361108119552 |
---|---|
author | Wang, Chin-Wei Hao, Yuning Di Gianfilippo, Riccardo Sugai, James Li, Jiaqian Gong, Wang Kornman, Kenneth S. Wang, Hom-Lay Kamada, Nobuhiko Xie, Yuying Giannobile, William V. Lei, Yu Leo |
author_facet | Wang, Chin-Wei Hao, Yuning Di Gianfilippo, Riccardo Sugai, James Li, Jiaqian Gong, Wang Kornman, Kenneth S. Wang, Hom-Lay Kamada, Nobuhiko Xie, Yuying Giannobile, William V. Lei, Yu Leo |
author_sort | Wang, Chin-Wei |
collection | PubMed |
description | Rationale: The endemic of peri-implantitis affects over 25% of dental implants. Current treatment depends on empirical patient and site-based stratifications and lacks a consistent risk grading system. Methods: We investigated a unique cohort of peri-implantitis patients undergoing regenerative therapy with comprehensive clinical, immune, and microbial profiling. We utilized a robust outlier-resistant machine learning algorithm for immune deconvolution. Results: Unsupervised clustering identified risk groups with distinct immune profiles, microbial colonization dynamics, and regenerative outcomes. Low-risk patients exhibited elevated M1/M2-like macrophage ratios and lower B-cell infiltration. The low-risk immune profile was characterized by enhanced complement signaling and higher levels of Th1 and Th17 cytokines. Fusobacterium nucleatum and Prevotella intermedia were significantly enriched in high-risk individuals. Although surgery reduced microbial burden at the peri-implant interface in all groups, only low-risk individuals exhibited suppression of keystone pathogen re-colonization. Conclusion: Peri-implant immune microenvironment shapes microbial composition and the course of regeneration. Immune signatures show untapped potential in improving the risk-grading for peri-implantitis. |
format | Online Article Text |
id | pubmed-8171076 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-81710762021-06-03 Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes Wang, Chin-Wei Hao, Yuning Di Gianfilippo, Riccardo Sugai, James Li, Jiaqian Gong, Wang Kornman, Kenneth S. Wang, Hom-Lay Kamada, Nobuhiko Xie, Yuying Giannobile, William V. Lei, Yu Leo Theranostics Research Paper Rationale: The endemic of peri-implantitis affects over 25% of dental implants. Current treatment depends on empirical patient and site-based stratifications and lacks a consistent risk grading system. Methods: We investigated a unique cohort of peri-implantitis patients undergoing regenerative therapy with comprehensive clinical, immune, and microbial profiling. We utilized a robust outlier-resistant machine learning algorithm for immune deconvolution. Results: Unsupervised clustering identified risk groups with distinct immune profiles, microbial colonization dynamics, and regenerative outcomes. Low-risk patients exhibited elevated M1/M2-like macrophage ratios and lower B-cell infiltration. The low-risk immune profile was characterized by enhanced complement signaling and higher levels of Th1 and Th17 cytokines. Fusobacterium nucleatum and Prevotella intermedia were significantly enriched in high-risk individuals. Although surgery reduced microbial burden at the peri-implant interface in all groups, only low-risk individuals exhibited suppression of keystone pathogen re-colonization. Conclusion: Peri-implant immune microenvironment shapes microbial composition and the course of regeneration. Immune signatures show untapped potential in improving the risk-grading for peri-implantitis. Ivyspring International Publisher 2021-05-03 /pmc/articles/PMC8171076/ /pubmed/34093848 http://dx.doi.org/10.7150/thno.57775 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Wang, Chin-Wei Hao, Yuning Di Gianfilippo, Riccardo Sugai, James Li, Jiaqian Gong, Wang Kornman, Kenneth S. Wang, Hom-Lay Kamada, Nobuhiko Xie, Yuying Giannobile, William V. Lei, Yu Leo Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes |
title | Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes |
title_full | Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes |
title_fullStr | Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes |
title_full_unstemmed | Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes |
title_short | Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes |
title_sort | machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8171076/ https://www.ncbi.nlm.nih.gov/pubmed/34093848 http://dx.doi.org/10.7150/thno.57775 |
work_keys_str_mv | AT wangchinwei machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes AT haoyuning machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes AT digianfilipporiccardo machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes AT sugaijames machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes AT lijiaqian machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes AT gongwang machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes AT kornmankenneths machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes AT wanghomlay machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes AT kamadanobuhiko machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes AT xieyuying machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes AT giannobilewilliamv machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes AT leiyuleo machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes |