Cargando…

Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes

Rationale: The endemic of peri-implantitis affects over 25% of dental implants. Current treatment depends on empirical patient and site-based stratifications and lacks a consistent risk grading system. Methods: We investigated a unique cohort of peri-implantitis patients undergoing regenerative ther...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chin-Wei, Hao, Yuning, Di Gianfilippo, Riccardo, Sugai, James, Li, Jiaqian, Gong, Wang, Kornman, Kenneth S., Wang, Hom-Lay, Kamada, Nobuhiko, Xie, Yuying, Giannobile, William V., Lei, Yu Leo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8171076/
https://www.ncbi.nlm.nih.gov/pubmed/34093848
http://dx.doi.org/10.7150/thno.57775
_version_ 1783702361108119552
author Wang, Chin-Wei
Hao, Yuning
Di Gianfilippo, Riccardo
Sugai, James
Li, Jiaqian
Gong, Wang
Kornman, Kenneth S.
Wang, Hom-Lay
Kamada, Nobuhiko
Xie, Yuying
Giannobile, William V.
Lei, Yu Leo
author_facet Wang, Chin-Wei
Hao, Yuning
Di Gianfilippo, Riccardo
Sugai, James
Li, Jiaqian
Gong, Wang
Kornman, Kenneth S.
Wang, Hom-Lay
Kamada, Nobuhiko
Xie, Yuying
Giannobile, William V.
Lei, Yu Leo
author_sort Wang, Chin-Wei
collection PubMed
description Rationale: The endemic of peri-implantitis affects over 25% of dental implants. Current treatment depends on empirical patient and site-based stratifications and lacks a consistent risk grading system. Methods: We investigated a unique cohort of peri-implantitis patients undergoing regenerative therapy with comprehensive clinical, immune, and microbial profiling. We utilized a robust outlier-resistant machine learning algorithm for immune deconvolution. Results: Unsupervised clustering identified risk groups with distinct immune profiles, microbial colonization dynamics, and regenerative outcomes. Low-risk patients exhibited elevated M1/M2-like macrophage ratios and lower B-cell infiltration. The low-risk immune profile was characterized by enhanced complement signaling and higher levels of Th1 and Th17 cytokines. Fusobacterium nucleatum and Prevotella intermedia were significantly enriched in high-risk individuals. Although surgery reduced microbial burden at the peri-implant interface in all groups, only low-risk individuals exhibited suppression of keystone pathogen re-colonization. Conclusion: Peri-implant immune microenvironment shapes microbial composition and the course of regeneration. Immune signatures show untapped potential in improving the risk-grading for peri-implantitis.
format Online
Article
Text
id pubmed-8171076
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-81710762021-06-03 Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes Wang, Chin-Wei Hao, Yuning Di Gianfilippo, Riccardo Sugai, James Li, Jiaqian Gong, Wang Kornman, Kenneth S. Wang, Hom-Lay Kamada, Nobuhiko Xie, Yuying Giannobile, William V. Lei, Yu Leo Theranostics Research Paper Rationale: The endemic of peri-implantitis affects over 25% of dental implants. Current treatment depends on empirical patient and site-based stratifications and lacks a consistent risk grading system. Methods: We investigated a unique cohort of peri-implantitis patients undergoing regenerative therapy with comprehensive clinical, immune, and microbial profiling. We utilized a robust outlier-resistant machine learning algorithm for immune deconvolution. Results: Unsupervised clustering identified risk groups with distinct immune profiles, microbial colonization dynamics, and regenerative outcomes. Low-risk patients exhibited elevated M1/M2-like macrophage ratios and lower B-cell infiltration. The low-risk immune profile was characterized by enhanced complement signaling and higher levels of Th1 and Th17 cytokines. Fusobacterium nucleatum and Prevotella intermedia were significantly enriched in high-risk individuals. Although surgery reduced microbial burden at the peri-implant interface in all groups, only low-risk individuals exhibited suppression of keystone pathogen re-colonization. Conclusion: Peri-implant immune microenvironment shapes microbial composition and the course of regeneration. Immune signatures show untapped potential in improving the risk-grading for peri-implantitis. Ivyspring International Publisher 2021-05-03 /pmc/articles/PMC8171076/ /pubmed/34093848 http://dx.doi.org/10.7150/thno.57775 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
Wang, Chin-Wei
Hao, Yuning
Di Gianfilippo, Riccardo
Sugai, James
Li, Jiaqian
Gong, Wang
Kornman, Kenneth S.
Wang, Hom-Lay
Kamada, Nobuhiko
Xie, Yuying
Giannobile, William V.
Lei, Yu Leo
Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes
title Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes
title_full Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes
title_fullStr Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes
title_full_unstemmed Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes
title_short Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes
title_sort machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8171076/
https://www.ncbi.nlm.nih.gov/pubmed/34093848
http://dx.doi.org/10.7150/thno.57775
work_keys_str_mv AT wangchinwei machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes
AT haoyuning machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes
AT digianfilipporiccardo machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes
AT sugaijames machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes
AT lijiaqian machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes
AT gongwang machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes
AT kornmankenneths machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes
AT wanghomlay machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes
AT kamadanobuhiko machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes
AT xieyuying machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes
AT giannobilewilliamv machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes
AT leiyuleo machinelearningassistedimmuneprofilingstratifiesperiimplantitispatientswithuniquemicrobialcolonizationandclinicaloutcomes